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1 INTRODUCTION

The Australian Bureau of Meteorology1 head-
quartered in Melbourne is the national weather ser-
vice of Australia. It has a strong need for complex
and evolving systems for managing its weather fore-
casting, monitoring and alerts and is currently in the
process of developing a sophisticated software sys-
tem in which intelligent agents play a significant role.

There are a number of challenges to be met dur-
ing this development:

• The system must evolve over time. It must
include legacy software, and must include and
make use of new and more sophisticated com-
ponents as these are made available.

• It must be a distributed and open system. Com-
ponents must be able to run on different plat-
forms, and must be able to be developed and
deployed by different groups with only loose co-
operation. As new components are added they
must be located and used appropriately.

• The system must handle large amounts of data,
used and produced by many components includ-
ing legacy software.

• The system involves a range of complex goals, a
highly dynamic environment and some complex
inferencing.

The Forecast Streamlining and Enhancement
Project (FSEP) is a major project within the Aus-
tralian Bureau of Meteorology which seeks to im-
prove the quality, quantity, consistency and timeli-
ness of weather products and services to the com-
munity and major clients such as the aviation indus-
try, fire fighters and emergency services. Additional
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potential clients include shipping and agriculture. In-
creasingly, clients require real-time alerting of signif-
icant weather events. To improve the timeliness of
weather alerts to clients, and to help streamline the
work-flow of forecasters, intelligent alerting within
the forecast system has a high priority in FSEP.

The domain is highly dynamic, with large
amounts of data about a (sometimes) rapidly chang-
ing environment. There are also a wide range of
tasks that must be addressed by the system, such
as detecting particular meteorological phenomena,
resolving inconsistencies in information, providing
appropriate focused information to users, closely
watching particular geographical areas (e.g. around
airports), etc. This combination of a range of com-
plex tasks and a highly dynamic environment, makes
a system incorporating intelligent agents, which can
be both reactive and proactive, a natural choice.

In this paper, we first introduce intelligent soft-
ware agents, before exploring the application domain
further. We then describe our initial implementa-
tion, built using a commercial agent framework, and
show how it addresses a number of these require-
ments. Finally, we outline our requirement for flex-
ible alert notification and indicate some promising
research leads currently under investigation.

2 BDI AGENT SYSTEMS

The research ideas behind intelligent agents date
back to the mid 1980’s (Georgeff & Lansky 1986,
Bratman 1987). The technology has subsequently
been used successfully in a number of challenging
applications such as air traffic control (Ljungberg &
Lucas 1992) and space shuttle monitoring (Georgeff
& Ingrand 1990).

We are particularly interested in goal directed
agents using pre-specified plans, such as those
supported by the agent development frameworks
JACK Intelligent AgentsTM (Busetta et al. 1999),
dMARS (d’Inverno et al. 1998), PRS (Ingrand,
Georgeff & Rao 1992), JAM (Huber 1999), etc.
These are referred to as BDI (Belief, Desire, Inten-
tion) agents, because of the way that they represent



and work in terms of these kind of concepts. (In
particular we use JACK, an industrial strength sys-
tem for developing BDI agents, developed by Agent-
Oriented Software2 in Melbourne, Australia.)

The plans in these systems describe a particular
way of achieving a goal (or sub-goal) in a particular
situation, known as a context. The goal directed na-
ture of the agent execution mechanism provided by
the system ensures that if an agent fails to achieve
its goal using a particular plan, it will search its plan
library and try an alternative plan if one is available.
Appropriate plans for use are decided as late as pos-
sible, i.e. only when the agent is ready to achieve
the sub-goal. Thus the choice is always made with
the current situation in mind. Plans can also contain
sub-goals, which allows for a hierarchical approach
where goals are broken down into sub-goals, which
may themselves be further broken down. At each
level the appropriate plan for the current situation is
chosen from the library of available plans.

The combination of reactivity and goal-
directedness of BDI agent systems makes them
an excellent candidate for complex applications
operating in dynamic environments. In addition
to this run-time flexibility, BDI systems are highly
scalable. As new situations are identified and ways
of behaving in those situations developed, additional
plans can be added to an agent’s repertoire, along
with a description of the applicable situation.

3 APPLICATION DOMAIN CHARACTERISTICS

There is a particular requirement for improved avi-
ation and fire forecasts, and an important compo-
nent is the rapid amendment of forecasts as soon as
the need for amendment is indicated. This may be
achieved by continual comparison of weather condi-
tions against forecasts, which would be labour inten-
sive if done by humans. An automated alerting sys-
tem can perform a continuous weather watch and en-
sure forecasters will be alerted to significant weather
developments in real time so that amendments may
be quickly issued. Less severe weather changes will
also be alerted by the system. The quality and time-
liness of current aviation and fire forecasts will thus
be continuously monitored and corrected. Similar
mechanisms can be used to deliver these updated
forecasts to a wider audience.

3.1 Many clients with different needs

As listed earlier, there are many external client
markets for an automated, real-time meteorological
warning system. However, our experimental proto-
type is focussed on the aviation sector. Even here,
clients fall into groups with different information re-
quirements: forecasters themselves, regulatory au-
thorities (Air Services Australia), commercial airlines
(passenger and freight), military aviation and general
(private) aviation.

Providing targetted information to multiple fore-
casters is one thing, but the aviation market may

2http://www.agent-software.com

be much larger. The Australian domestic pas-
senger fleet is under 1000 aircraft but provides
over 500,000 domestic (plus 100,000 international)
passenger flights (aircraft movements) per annum,
whereas the general aviation fleet is over 10,000
aircraft flying for around 2,000,000 hours per an-
num (Civil Aviation Safety Authority 2002).

Figure 1: A typical automatic weather station.

TAF YMML 122218Z 0024
24006KT 9999 FEW025 BKN030
FM02 18015KT 9999 SCT040
FM17 25006KT 9999 BKN025
T 15 19 20 16 Q 1028 1026 1025 1026

Figure 2: An example of a TAF, a forecast of weather
around an airport, encoding among other data the
future temperature (T) and pressure changes (Q) on
the last line.

3.2 Many data sources

There are also many existing sources of meteorolog-
ical data currently available for generating weather
alerts. These include

• raw observations provided by automatic
weather stations (AWS, Fig. 1) available
in 1 minute (instantaneous) and 10 minute
(averaged) forms;



• filtered services such as METARS (a routine
meteorological report issued every half-hour
from particular stations, either automatically or
by human);

• localised forecasts such as terminal aerodrome
forecasts (TAF, highly abbreviated forecasts of
weather around airports intended for pilots,
Fig. 2);

• thunderstorm predictions from the TITAN
(Thunderstorm Identification Tracking Analy-
sis and Nowcasting) system, which produces
short term (up to 2 hour) trajectory predictions
as new radar data arrives every 5 or 10 min-
utes (Dixon & Wiener 1993);

• email notifications, e.g. from the Volcanic Ash
Advisory Centre (VAAC);

• direct observations (such as Clear Air Turbu-
lence) from pilots en route;

3.3 Alerts

Alerts (or warnings) can be raised when inconsisten-
cies are detected, either between a forecast and cur-
rent observations, or between multiple observations
or predictions from the same or comparable sources.
When an inconsistency is found, the system can alert
interested clients.

For example, an inconsistency between a TAF
and corresponding AWS or METARS observations
can be delivered as an alert to the current respon-
sible forecaster for that region who may potentially
change the TAFs issued in the future, thus leading
to removal or lessening of the inconsistency. An in-
telligent system can compare these data streams and
analyze them in various contexts: for instance, in-
consistency, TAF not issued, TAF expired and TAF
unrealistic. As part of such a system, intelligent
agents can reason about such things as

• whether this alert has previously been issued,

• how important the alert is,

• whether the alerts are being responded to,

• which forecaster(s) to direct the alert to.

4 AN INITIAL IMPLEMENTATION

The current prototype is an end-to-end demonstra-
tion of all the architectural capabilities required (sub-
scriptions, data routing, communication with data
sources, self-describing data, and simple service de-
scriptions and service location mechanisms). While
this example is relatively small, it provides a basic
structure that can be used and refined for building
the larger system.

As described in section 2, BDI agents provide
a ready implementation vehicle for adaptive, dis-
tributed systems. Individual agents can be extended
via additional plans to cope with new situations, and
additional agents can be deployed to distribute the

workload or provide new functionality. Ensuring ac-
curate but minimal communication within the agent
network then becomes the major problem.

4.1 A Pipe-and-Filter, Subscription Architecture

The architecture of the system contains a number
of specially developed agents, a number of existing
components, including the real-time data input sys-
tem, and the data representation and management
layer which is crucial to the overall architecture.

These components can all be run on the one ma-
chine or can be run on different machines across the
network. In the pilot we have successfully run the
system with components running on an operational
server with real-time input data communications, a
test system on a development machine, and agent
driven graphical user interfaces (GUIs) running on
forecaster workstations and PCs. See Fig 3.

The components are:

• Independent sources of AWS, TAF, VAAC and
TITAN messages

• GUI instances that receive alerts and display
them

• The main components of the system that re-
ceive TAF, AWS, VAAC and TITAN messages
and issue alerts.

These components communicate using TCP/IP
or JACK MessageEvents, sending objects encoded
using tree-table-xml (see Section 4.2) or serialized
TTables contained in JACK messages.

The main components of the overall system
are themselves agent systems that each contain a
DataStreamDispatcher agent and some number of
Monitor agents. The DataStreamDispatcher agent
is responsible for managing incoming subscriptions
and for routing messages. A TAFMonitor agent will
subscribe to TAF and AWS messages and will gen-
erate discrepancy based alerts that it sends to the
DataStreamDispatcher, which are then routed to the
appropriate subscribers. Similarly, AbsAlert agents
issue alerts when AWS values exceed their thresh-
olds, VaacAlert agents issue volcanic ash alerts and
the TitanAgent alters on changes in thunderstorm
activity, based on alerts or messages from their re-
spective sources, and distribute these alerts via their
own DataStreamDispatchers. The internal structure
of each agent component in the prototype is depicted
in Fig 4.

Benefits

The pipe and filter design serves to minimise com-
munication requirements, placing the relevant intel-
ligent processing as close to the required information
sources as possible. The subscription mechanism en-
ables flexible decoupling of the producers and con-
sumers of alerts.
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4.2 Flexible Data Sharing via TTables

A generalized XML format known as tree-table-
xml (Gorman et al. 2002) is under development in
the Australian Bureau of Meteorology. Its design is
intended to accommodate current and future me-
teorological XML format requirements by being ex-
tremely generic. Instead of representing meteorolog-
ical metadata in XML tags, tree-table-xml defines a
high-level meta-metadata structure called a ttable.
This is not specific to meteorology, but is a generic
format capable of handling a wide variety of data.

This XML format also separates the metadata from
the data. Its document type declaration (DTD) is
shown below:

<!DOCTYPE tree-table-xml [
<!ELEMENT tree-table-xml (ttable)>
<!ELEMENT ttable (row*)>
<!ATTLIST ttable name CDATA #IMPLIED>
<!ELEMENT row (col+)>
<!ELEMENT col (#PCDATA | ttable)*>
<!ATTLIST col name CDATA #IMPLIED

type CDATA #IMPLIED>]>

Note that the tree-table-xml DTD consists of just
four meta-meta elements: tree-table-xml (the
root element), ttable, row and col. Minimal
attributes are defined for bootstrapping metadata:
type and name. The message data is contained in a
table called data and the corresponding metadata is
contained in a related metadata table. Each column
in the data table has a corresponding row in the
metadata table. For instance:
data
station wind wind air
name speed direction pressure
Melbourne 13.0 128 1001.0
Mildura 7.0 172 998.0
Avalon 20.0 117 1001.0



metadata
element unit data significant
name type digits
station name - string 0
wind speed knots double 3
wind direction degrees int 3
air pressure hectopascals double 4

Benefits

This simple high-level design facilitates the develop-
ment of software that can process a tree-table-xml
document without knowing its content type. The
TTable allows any kind of data to be expressed,
including meteorological, service description meta-
data, system administration data, and agent oriented
information. New data types may be introduced
without impacting negatively on existing agents.

5 EVOLVING AND EXTENDING THE SYSTEM

5.1 Adding Volcanic Ash Alerts

Partly as an exercise in determining how flexible the
alerting system is, we put together an alert using
an email list from the Volcanic Ash Advisory Centre
(VAAC) based in Darwin. To this end, we have cre-
ated a new email client and subscribed it to the vol-
canic email list. These emails were then piped into
a transient Java process which scanned the email for
the strings ‘volcan’, ‘erupt’ and ‘ash’ (not all emails
to this list are actually about eruptions) and the
name of any volcano in our region (from a database
of volcano names and locations). When found, the
system sends a TTable message to a JACK volcanic
alerting agent, which in turn can trigger an alert.

The volcanic ash alerting agent is available for
any other JACK agent in our Bureau system to sub-
scribe to (see Fig 3). These subscribers will usually
be an alert GUI sitting on a forecaster’s desk, see
Fig 5. The alert contains the first 30 lines of the
email, so it is available to the forecaster within the
GUI to allow manual elimination of false positives.

This system extension took about 2 days to put
together, demonstrating that our basic mechanism
is simple, flexible and functional.

5.2 Adding TITAN Alerts

Following this, we also added an alerting agent for
the TITAN thunderstorm prediction system (Dixon
& Wiener 1993). TITAN uses radar to detect thun-
derstorms within a 200km radius and tracks them
using a consistent label. Storm data are kept in a
file which is updated after every new radar scan (5 or
10 minutes). We hook into this system using FAM
(file access monitor) which runs a shell script when-
ever files of interest change. This script initiates a
Java job which converts the ascii TITAN data file
into a multi-row TTable, opens a socket connection
to the machine with the TITAN JACK agent process
running, and passes the TTable across.

The JACK agent process checks through the
TTable finding new storms over certain thresholds,

or old storms recently exceeding thresholds not al-
ready alerted, and if any are found, creates an alert
TTable. This is then posted to all subscribers to this
service.

The information posted on the alert GUI consists
of the radar name, the storm number (so forecasters
can identify it on external display systems), its loca-
tion (lat-long and radar centric), and the storm pa-
rameters (cubic kilometers, kilotons of mass, speed,
bearing, height in km, etc).

This extension was more complex than that for
volcanic ash alerts, but took just over a week to add.

6 DEPLOYMENT EXPERIENCE

The alert system has had its first exposure to avia-
tion forecasters, the alert GUI used can be seen in
Fig 5. This provided valuable feedback on a number
of issues, mostly around GUI look and feel, which we
will address in the near future.

There were a number of deployment issues,
broadly: self-healing from system failure and system
evolvability.

6.1 Self-healing from system failure

To minimise system coupling, we have implemented
the publish-subscribe pattern as noted above: when
an agent subscribes to a service, it is granted a lease
for a certain period. It then must resubscribe before
that period has expired to continue getting the ser-
vice. In this way, if a service is added or replaced by
another, clients are able to seamlessly reconnect to
the new service (assuming it has the same name).
This has the added benefit of providing self-healing.

All distributed systems are vulnerable to failures
in software, machines and networks, any one of
which may potentially bring down the system. Man-
ual intervention to fix failures is unrealistic and self-
healing is necessary. In the publish-subscribe pat-
tern, each server checks whether clients still have a
valid lease before providing the service, and if not dis-
cards that client’s subscription. On the client side,
if a server fails the client will attempt to resubscribe
until the service is again available. In this way the
entire system self heals without immediate human
intervention. This was amply demonstrated when,
during a recent sustained network interruptions, the
system promptly reestablished its internal connec-
tions.

6.2 System Evolvability

Software upgrades, updates and withdrawal of
agents would also leads to system failure if this were
not managed.

• The use of JACK facilitates easy implementa-
tion of new agent behaviour by adding new
plans within a capability that are applicable
in certain situations, adding new capabilities
within an existing agent, or adding new agents
to the system. For instance, the new subsystem



Figure 5: Example alert GUI showing volcanic ash mouse-over information

which alerts on volcanic ash detections was im-
plemented in less than two days.

• Leasing allows developers to withdraw and re-
place a component safely.

• Overriding the Java serialVersionUID on trans-
mitted classes (to remove dependency on par-
ticular compilations of classes at either end
of a message transmission via serialization) al-
lows components commonly transmitted be-
tween machines to be extended and replaced
incrementally and safely.

• The use of the generic data object TTable
(see Section 4.2) and its externalized text for-
mat tree-table-xml allows safe extension of data
structures without recompilation.

The subscription model made the system very
flexible, with alert GUIs running both on the fore-
caster’s desk, and several displaying the same data
on the development machine. The GUI on the fore-
caster desk subscribed only to TAF alerts, whereas
the development GUI subscribed to both TAF alerts
and volcanic ash alerts. The subscriptions are con-
trolled by drop-down menus on the GUI.

The forecasters now have access to the alert GUI
via a menu option on their workstations, so we can
easily expose them to future versions of the system
simply by uploading new Java library files.

7 PLANNED EXTENSIONS

In addition to incorporating new data types and
sources, for example wild fire data, we now wish to
evaluate the alerting system with additional clients.

One issue reported by the first set of aviation
forecasters, was the inability to be more selective
about which alerts were delivered. To date, the only
configuration possible has been whether or not to
subscribe to a particular type of alert agent. It was
not possible to limit alerts by geographical region
or selectively modify the preset thresholds. Regional
forecasters will want a low threshold for alerts within
their region, and higher thresholds further afield.

Similar configurability will be required when de-
livering alerts to aircraft en route. When flying from
Melbourne to Perth, pilots will probably not be in-
terested in thunderstorm alerts for Cairns, or ground
level fog in Adelaide as they fly high overhead (al-
though fog at Perth persisting until predicted ar-
rival would be of interest), or weather alerts for re-
gions they have already passed through. They may
also want to specify different thresholds at different
ranges and times.

Additional scenarios involve the introduction of
new data sources and types, as yet unknown to po-
tentially interested downstream clients. Examples
include:

• a new localised severe weather alert of known
type, predicted to intersect the current flight
path,

• new types of weather alert service, e.g. a light-
ning service, becoming available along the flight
path.

To minimise communication overheads, it would
be best to push such selectivity as close as possible
to the alerting sources, rather than receiving copious
unwanted messages and then having to exclude them
locally. This will require flexible and dynamic sub-
scription configuration, rather than the static imple-
mentation in use at present. Both intelligent agents
and human operators may be involved in this con-
figuration process, which could require several ex-
changes (in effect a configuration protocol).

To date we have investigated the service dis-
covery mechanisms provided for current client-server
and peer-to-peer models, but these seem limited to
exact matching on types and/or attributes (perhaps
due to their reliance on distributed hashtables for
implementation efficiency). What we will require is
more along the lines of the run-time message filtering
provided by the Java Messaging Service (Chappell &
Monson-Haefel 2000, Sun Microsystems 2003). Fur-
ther alternatives are listed in (Campailla et al. 2001).

Handling overlapping (and potentially conflict-
ing) data resources provides further complexity. Sim-
ple duplications should be resolved as far upstream
as possible, in order to minimise traffic; but conflicts



may need to be propagated to a human operator
for resolution. Service duplication will also impact
recovery from partial network interruptions.

8 CONCLUSION

JACK and TTables have proven extremely effective
in building and extending this experimental alerting
system. The level of data abstraction provided by
TTables plus the message passing provided by JACK
has meant that the underlying communication and
leasing infrastructure has not required modification
to accomodate additional data types as new services
are added. A new Monitor agent can be written,
or new JACK plans or capabilities added to existing
Monitor agents, in order to process the additional
TTable data.

The pipe and filter architecture has served to min-
imise communication traffic, and provided a mod-
ular location for intelligent processing. Combined
with the subscription mechanism, this modularity
has also aided ready incorporation of new services
implemented as new JACK agents. Several varieties
of JACK reasoning (event handling) have been ex-
ploited in subscription and alert handling.

The subscription mechanism combined with leas-
ing has also made the prototype more tolerant of
system failures.

The main problem to date has been the lack of
flexibility in the “all or nothing” subscription system.
This will be the focus of the next stage of research
and development.
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