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1. Introduction  
 
*Land surface models (LSMs or called soil-

vegetation models) deal with the exchanges of moisture 
and thermal energy between the land surface and the 
atmosphere. Many studies have demonstrated the sensi-
tivity of the surface energy budget and atmospheric 
fields to the formulation of land-surface processes, on 
virtually all spatial and temporal scales (see, e.g., Hen-
derson-Sellers et al. 1996).  

Our ability to accurately describe the land surface 
processes and to forecast the time evolution is severely 
hindered by process uncertainties and limited availabil-
ity of appropriate data. There exists a continuing debate 
about the ways to properly harness the observations to 
improve LSMs performance (e.g., GCIP3 report, 2002, 
http://ecpc.ucsd.edu/gcip/2002JGRpapergcipwebs/200
210.WEBSJGRsubmit.html).  The very limited avail-
ability of direct soil temperature and moisture meas-
urements is obviously not adequate for routine model 
initialization.  Recent development in in situ measure-
ments of surface fluxes, soil temperature and soil mois-
ture content in the Oklahoma Atmospheric Surface-
layer Instrumentation System (OASIS, Brotzge 2000) 
gives us a unique opportunity to verify LSMs and to 
test methods for estimating soil state variables as well 
as uncertain parameters in LSMs.  

On the premise that the quality of LSMs output is 
closely related to the meteorological forcing that drives 
it, the Land Data Assimilation System (LDAS, Schaake 
et al. 2002; Nijssen et al. 2001) performs continuous 
forced run of a land surface model to assimilate atmos-
pheric information to improve descriptions of land sur-
face conditions. In a similar spirit, the Antecedent Pre-
cipitation Index (API) method (Linsley et al. 1949) 
uses weighted summation of past daily precipitation 
amounts to estimate the content of soil moisture. API is 
often used in catchment hydrology for studying runoff 
and infiltration distribution. API has also been used to 
initialize soil moisture content in LSMs for numerical 
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weather prediction (NWP) and simulation (e.g., Ziegler 
et al. 1997). Both approaches enjoy the advantage of 
easy implementation and performance. These retro-
spective approaches are generally case sensitive to 
changes in location and time period, however. The re-
trieved "optimal" soil moistures often deviate from the 
truth (Jones et al. 2003), especially with the API 
method for which much tuning of the weighting pa-
rameter is usually needed for specific locations. For the 
LDAS approach, the moisture analyses depend very 
much on the skill of the land model used (Henderson-
Sellers et al. 2002; Qu et al. 1998). 

During the past two decades, various inverse 
schemes were also proposed to indirectly infer land 
surface prognostic variables and model parameters 
(Mahfouf 1991; Calvet et al. 1998; Margulis and 
Entekhabi 2001; Xu and Zhou 2003). Mahfouf (1991) 
pioneered the attempt of retrieving top layer moisture 
from observations of screen-level air temperature and 
relative humidity. Using the Interactions Soil Bio-
sphere Atmosphere (ISBA, Noilhan and Planton 1989, 
NP89 henceforth) land surface model, he obtained 
positive results for a crop area and clear sky conditions. 
He described two possible approaches: a variational 
algorithm where a cost function is minimized over an 
assimilation period, and a sequential assimilation 
scheme that consists of a set of predictions and static 
correlation of soil moisture. He validated both methods 
against in situ data collected during a field experiment, 
using a one-column model to represent the interactions 
between surface processes and the planetary boundary 
layer structure. Calvet et al. (1998) tried the inverse 
estimation of the bulk soil moisture content using sur-
face variables. They argued that knowing the atmos-
pheric forcing (especially precipitation) and four to five 
surface soil moisture over two weeks are adequate to 
retrieve the bulk soil moisture by inverting ISBA 
scheme. They realized a strong relationship between 
the deeper layer soil moisture and surface soil mois-
ture, especially when the vegetation are in full growth, 
it is therefore feasible to infer the bulk soil moisture by 
minimizing error in the  prediction of surface soil mois-
ture.  Xu and Zhou (2003) discuss a linear regression 
method for retrieving bulk soil moisture contents from 
soil temperature profile measurements, based on the 
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soil heat capacity dependency on soil moisture con-
tents. More recently, with the development of remote 
sensing techniques, several proposals for assimilating 
ground surface temperature to infer other related land 
surface variables were made (e.g., Boni et al. 2001; Li 
and Islam 2002). Boni et al. (2001) proposed a scheme 
for assimilating ground temperature for the estimation 
of a surface soil moisture index. They found that the 
optimized surface soil moisture index also leads to sat-
isfactory description of the surface energy balance 
components. Through a series of sensitivity experi-
ments, Li and Islam (2002), however, found that initial 
soil moisture profile that optimizes the surface soil 
moisture description only does not necessarily lead to 
optimal estimation of surface fluxes, the success of the 
inversion technique depends, to a large extent, on the 
successful retrieval of root zone soil moisture content 
instead.   

As part of our effort in developing a general 
framework for estimating or retrieving the land surface 
model variables and certain uncertain model parame-
ters, we present in this paper an adjoint-based 4D 
variational (4DVAR) retrieval system that assimilates 
ground temperature observations from either remote 
sensing satellite or surface observation stations. In an-
other word, the ground or skin temperature data are 
assimilated for the purpose of determining model vari-
ables and parameters that are not directly measured. 
This system, when completed, will also be capable of 
retrieving these variables using near-surface atmos-
pheric measurements or a combination of the two. 
Through the analysis, questions such as what soil prop-
erties can be effectively retrieved from only the surface 
temperature information are addressed.  

Compared to more traditional methods, the main 
advantages of the adjoint-based 4DVAR method lie 
with its ability to optimally use observations distributed 
over time, and observations that are indirectly related 
to the variables to be determined or retrieved.  For a 
relatively simply system, the method can also be rather 
efficient. In addition, the adjoint model provides a 
powerful tool for studying sensitivities of the model 
output to input parameters, hence provides physical 
insight on the behaviors of the land surface system.  

Our data assimilation system is based on a revised 
force-restore-based land surface model, which is 
briefly presented in section 2a). The variational re-
trieval scheme is discussed in section 2b). Section 3 
describes data from the OASIS data that are used by 
our forward model validation and data assimilation 
experiments. In the first part of section 4, systematic 
numerical experiments using synthetic (model simu-
lated) data are performed to test the effectiveness and 
robustness of the retrieval scheme. Analyses of the 
causality mechanism involved are performed. Issues 

such as the relative sensitivity of the target variable, the 
variable that will be compared against observations, to 
the initial soil variables are also addressed. The results 
provide guidance for our data assimilation experiments 
with real observations in section 4c) where the basic 
issues such as temporal resolutions and distributions of 
observations are further discussed. The most informa-
tive periods during the daily cycle are identified and an 
explanation given. The effects the assimilation window 
length on the quality of retrieval is evaluated and the 
results are found to be consistent with our understand-
ing on the information content of the observations. A 
summary is given in section 5. 

2. 4DVAR system for retrieving initial state of land-
surface model 
 
Four-dimensional variational (4DVAR) data as-

similation and/or retrieval systems seek to minimize 
the misfit between observations distributed over a pe-
riod of time (called the assimilation window) and the 
prediction of a forward forecast model (Le Dimet and 
Talagrand 1986; Talagrand and Courtier 1987). A cost 
function, typically of a quadratic form, measures such a 
misfit. The initial condition of the forecast model is 
adjusted, starting from an initial guess, so as to mini-
mize the cost function. When the variables defining the 
initial conditions are not directly measured, such vari-
ables are said to be retrieved (from the observed quan-
tities) and the entire procedure is often referred to as 
retrieval. Since such schemes determine the input of a 
prediction model by constraining the model output, 
they are called inverse methods. 

Efficient minimization algorithms, such as the 
conjugate gradient method (Navon and Legler, 1987) 
used in this study, requires the gradient of the cost 
function with respective to the variables that are to be 
adjusted in the initial condition (called control vari-
ables), and the gradient can be efficiently obtained by a 
backward-in-time integration of the adjoint model. 
Here, the adjoint is mathematically defined as the 
transpose of the tangent linear approximation to the 
nonlinear forward prediction model (Le Dimet and 
Talagrand 1986). In a more general system, the control 
variables can include other parameters such as those 
found in the formulation of the forward model. 

In the standard 4DVAR procedure, the forward 
prediction model is used as a strong constraint, i.e., it is 
strictly satisfied during the assimilation period. For this 
reason, the accuracy of the forward model does affect 
the accuracy of the retrieval. An additional requirement 
for a successful retrieval is the existence of a strong 
connection between the variables that are measured and 
those to be retrieved. This is referred to as the sensitiv-
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ity of the cost-function to the control variables, and the 
sensitivity is measured by the gradient of the cost func-
tion with respect to the particular control variable. 

As pointed out earlier, in this study, we attempt to 
retrieve the state of the soil and vegetation, by using 
skin temperature measurements. The model used is an 
improved version of the two-layer soil-vegetation (or 
land surface) model and the surface physics model 
from the ARPS (Advanced Regional Prediction Sys-
tem, Xue et al. 2000, 2001). For the current applica-
tion, the atmospheric component is not needed, except 
for the package that calculates the surface fluxes. In the 
first part of this section, we will describe the forward 
model. 

a)  Forward model 

Land surface schemes, although developed based 
on different concepts and with different levels of com-
plexity, are schemes that solve energy conservation 
(for soil temperatures) and mass conservation (for soil 
water content) equations. The aim of land surface 
scheme is to provide temperature and specific humidity 
at the lower boundary of atmospheric models (Mahfouf 
and Viterbo 2001). These two variables are needed in 
the estimation of heat, water and momentum exchanges 
between the land surface and the lower atmosphere. 
Numerically, the link between soil and atmospheric 
variables is provided through the parameterizations of 
the surface fluxes, usually based on similarity theory.  

1). Soil temperature equations 

 In the original derivation of the force-restore 
scheme (Bhumralkar 1975; Blackadar 1976) for sur-
face soil temperature, Bhumralkar (1975) assumed the 
daily mean temperature is the same at all soil depths. 
This assumption may be valid in the spring and fall 
seasons of a year, but is not true in most parts of the 
world at summer and winter (de Vries 1963; Ren and 
Xue 2003). Ren and Xue (2003) discussed this issue 
and proposed a method for proper incorporation of the 
mean soil temperature lapse rate in the force-restore 
model. The most significant refinement by Ren and 
Xue (2003) to the standard force-restore scheme is to 
include the effect of seasonal mean vertical tempera-
ture gradient, defined in terms of the seasonal mean 
temperature difference between surface and deep soil. 
Here the seasonal mean soil temperature is defined as 
the running mean of soil temperature over one to two 
weeks, a period long enough to remove diurnal tem-
perature changes while retaining seasonal variations.  

The revised force-restore soil temperature equa-
tions that we use in this study are as follows, 
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where Tsfc is ground surface or skin temperature, Rn is 
net radiation flux and is provided by OASIS observa-
tions in our experiments. LE is latent heat flux, H sen-
sible heat flux, ω the frequency of diurnal oscillation 
(ω= 2 /π τ , withτ is equal to 24 hours). CT is thermal 
conductivity, Tdp is deep soil temperature, γ is the 
“lapse rate” of the seasonal mean soil temperature, 

2 /T Vd Cλ ω= is the e-folding depth of downward 
propagation of surface temperature oscillation signals. 
Here Tλ  is soil thermal diffusivity. In the ARPS im-
plementation, a single (mixed) heat budget is consid-
ered for the bare ground and the vegetation therefore 
CT represents the average conductivity of bare ground 
and vegetation, and 

 

1 1 1[(1 ) ]T G VC veg C vegC− − −= − + .  (2) 
Here veg is the fractional vegetation coverage, VC is 
the inverse of vegetation heat capacity, and CG  the 
inverse of volumetric ground heat capacity which is 
parameterized as 

ln100( / )
b

G Gsat sat dpC C w w= . (3) 
Here CGsat is the inverse of soil heat capacity at satura-
tion (depends on soil textural properties), wsat the satu-
ration soil water content, wdp the bulk/deep-layer soil 
moisture content, and b the slope of log-retention 
curve, i.e., Clapp-Hornberger (1978) parameter. Re-
trieval of soil wetness condition is possible partially 
because of Eqs. (2) and (3), or the soil moisture de-
pendence of soil heat capacity. For this reason, the 
adequate modification to CV by Pleim and Xiu (1995) 
is considered critical for our retrieval. However, unlike 
the simplistic scheme of Xu and Zhou (2003), our dy-
namic system includes more sensitive channels, such as 
transpiration from deep layer which signifies another 
mechanism for deep soil moisture to influence on sur-
face energy partition and hence surface temperature 
evolution. 

2). Soil moisture equations 

The soil moisture content has a strong impact on 
the humidity of the low-level atmosphere. Land surface 
processes are especially relevant for warm season pre-
cipitation in temperate region, where, on daily basis, 
evaporation constantly extracts water from land surface 
and this effect propagates to deeper soil through evapo-
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ration for bare soil or intercepted water reservoirs and 
through transpiration for vegetated areas. The atmos-
pheric precipitation process, in return, recharges the 
soil in the hydraulically active layer, where soil mois-
ture conditions control the partitioning of surface en-
ergy fluxes, ecosystems, and biogeochemical cycles.  
The existence of roots facilitates the water flow 
through the soil-vegetation-atmosphere system through 
transpiration during daytime and hydraulic lift (M. 
Caldwell, personal communication) during nighttime, 
and thus significantly enlarges the depth of hydrauli-
cally active soil layer. In this study, we follow the gov-
erning equations for three water reservoirs as in NP89,    
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Here the three prognostic variables include the soil 
surface wetness ( sfcw ), the bulk/deep-layer soil mois-
ture ( dpw ), and the canopy interception water 
( vw ). sfcw and dpw  are defined in terms of volumetric 
water content in the soil. These time-dependent pa-
rameters are forced by precipitation reaching the 
ground ( gP ), the bare ground evaporation (Eg); evapo-
ration of the wet part of vegetation (Ev); the transpira-
tion of the dry part of canopy (Etr); and vegetation 
dripping ( R v). gP equals the total precipitation (per 

unit surface area, P) reaching the ground ( ( )1P veg− ) 
plus that possibly dripped from the canopy (Rv).  The 
surface moisture is restored to equilibrium by moisture 
sources from the thick underlying soil layer by the sec-
ond term on the right hand side of Eq. (4a).  The time 
scale at which this restoring process acts is prescribed a 
priori in the form of time constant τ which is set to one 
day, and the two soil-layer depths for soil moisture are 
d1 and d2.  

Thus, the interaction between the soil and atmos-
phere varies as a function of the vegetation coverage, 
vegetation type, soil type, and hydraulic conductivity. 
These properties are specified by diagnostic variables 

1C (representing the hydraulic property of soil affecting 
the infiltration at the surface), 2C (the subsurface con-
ductivity) and CT. These parameters are formulated in 
terms of basic soil parameters such as soil moisture at 
field capacity (wfc, or filled reservoir capacity), wilting 
point (wwilt, below which the plant transpiration 

ceases), saturation soil water content (wsat, the maxi-
mum possible water content), wgeq (the surface volu-
metric moisture at the balance of gravity and capillary 
forces), and various other thermal and hydraulic prop-
erties of the soil as described in Appendix A.3 of Noil-
han and Mahfouf (1996). Since all soil properties are 
specified according to the 11 soil types of the U. S. 
Department of Agriculture (USDA) soil textural classi-
fication (Clapp and Hornberger 1978), the only soil 
data required for this model are the soil types by tex-
tural classifications. 

Although the soil moisture equations are kept for-
mally the same as in NP89, coefficients in the equa-
tions have been modified according to their later work 
(Noilhan and Mahfouf 1996). We also follow several 
revisions by Xiu and Pleim (2001), which include the 
modifications to aerodynamic resistance Ra, the func-
tional form of soil moisture availability (to PBL) hu, 
and stomatal resistance sR . 

b) The 4DVAR assimilation system 

To establish a 4DVAR retrieval system based on 
the two-layer ISBA like land surface model in the 
ARPS, we first developed the tangent linear counter-
part (TLM) of the land surface model then the adjoint 
of the TLM.  

The development of TLM and adjoint models, es-
pecially the letter, by hand is a tedious process that is 
prone to error. Fortunately standard procedures exist 
that can be used to validate the codes. In this study, the 
TLM is first validated by comparing the TLM solution 
with the difference of two nonlinear model solutions 
starting from sufficiently close initial conditions. The 
adjoint code is verified using the inner product of TLM 
and adjoint solutions, and the inner product should be 
time invariant (LeDimet and Talagrand, 1986). The 
relative magnitude of the fluctuation of this time in-
variant quantity is verified to be less than 10-7 for a 
two-day assimilation cycle using reasonably small ini-
tial perturbations and double precision.  

Based on our assumed data availability (only 
ground temperature data are available), the cost-
function, J, used in this study is defined as the quad-
ratic difference between modeled and measured ground 
surface temperature, i.e.,  
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where superscript ‘o’ means observation and ‘f’ is 
model forecast. sfcσ is the standard deviation of the 
surface temperature observation errors. The magnitude 
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of sfcσ  is actually trivial in this study since only one 
type of data is assimilated and we assumed exact for-
ward model. In our system, the control variables are the 
surface and deep layer soil temperature, surface and 
deep layer soil moisture and canopy water content at 
the beginning of the assimilation window. 

Once a correct adjoint system is available, all the 
sensitivity information can be conveniently obtained 
via a single backward integration of this adjoint model. 
Using an optimization scheme, errors of ground surface 
temperature prediction are then systematically mini-
mized subject to the constraints imposed by the model. 
An automatic tool TAFLINK from Fastopt 
(http://fastopt.com), which provides gradient test re-
sults, was used to test the optimization system.  

In the minimization procedure, it is also necessary 
to properly scale the control variables so that they are 
of similar order of magnitude. The scaling improves in 
conditioning of the optimization procedure (Jones et al. 
2003). It will be shown that our optimization system 
can perform retrieval for all control variables simulta-
neously inasmuch as the small perturbation and over-
determination requirements are satisfied. Small pertur-
bation requirement demands that our initial guesses 
should not be too far from the truth to void the tangent 
linear assumption.  Over-determination requires that 
the observations (ground temperatures here) outnumber 
the total control variables.  

3. OASIS Data 
 
In this study, we use the OASIS data set at the 

Norman, Oklahoma site (Elevation: 360 m; Latitude: 
35 15’ 20”; Longitude: 97 29’; Slope: 0.0) for validat-
ing the forward model, forcing the assimilation system 
and for evaluating the retrieval results. The same data 
set has been used for model verification by Brotzge and 
Weber (2002). The meteorological parameters avail-
able include surface temperature, water vapor mixing 
ratio, wind speed, surface pressure, and precipitation 
rate at 5 min intervals (except that precipitation is ac-
cumulated from 00Z). The soil moisture and tempera-
ture are available in terms of half-hourly averaged time 
series at 5, 25, 60 and 75 cm depths. Vegetation pa-
rameters (vegetation type and coverage, LAI and 
NDVI index) are estimated biweekly. The OASIS year 
round continuous and direct measurements of soil 
moisture, temperature and all four components of sur-
face fluxes provide the opportunity for rigorously vali-
dating and improving the dynamic framework of 
LSMs, and for objective determination of most uncer-
tain soil and vegetation parameters via retrieval tech-
niques. 

Our selected time period between 00UTC, 4 and 
28 August 2000 represent a synoptically quiescent pe-
riod with clear sky conditions and wind speed gener-
ally less than 5 m s-1. Forced by periodical net radiation 
flux, the air pressure, air temperature (maximum tem-
perature of 42° C), water vapor mixing ratio and soil 
temperatures within 25 cm depth all show apparent 
daily cycles. This period shows a drying down process 
of the surface soil moisture. The volumetric soil water 
content at 5cm did not drop sharply during the first 48 
hours starting from 00UTC, August 4, indicating that 
the process enters stage II of drying after significant 
rainfall (Idso et al. 1974). The soil moisture measure-
ments at the remaining three depths show little changes 
on daily basis. 

The possible assimilation period, 4-28 August 
2000, a total of 24 days, is divided into three consecu-
tive periods of 8-day each. During this period, vegeta-
tion is at a slightly stressed stage of growth, although 
with a rather high vegetation coverage (0.75, estimated 
based on the study of Brotzge and Weber (2002) for 20 
May 2000) and LAI=0.72. The vegetation is slightly 
stressed because NDVI = 0.5 rather than 0.55 for 20-22 
May period when vegetation is rather active. The soil 
moisture contents at the top measurement depth (5 cm) 
fall close to the wilting point value (22% for silty clay 
soil) at the driest hours of the day. This is also shown 
by the Halstead coefficient ( ( ) ( )1 /a a sR R Rδ δ− + +  
being around 0.06 for this period. Here δ is wet frac-
tion of canopy as parameterized by Deardorff (1978). 
Considering that the dew formation is insignificant, the 
stomatal resistance is nearly 20 times that of aerody-
namic resistance.  

The surface ground temperature to be assimilated 
can be inferred from soil profile measurements by an 
extrapolation technique (Jackson, 1997; Ren and Xue, 
2003). However, for our selected periods, the a priori 
determined KT tends to give lower surface temperature 
amplitude due to an overestimation of the scaling 
depth. We thus use directly measured infrared surface 
temperature rather than the extrapolated surface tem-
perature. 

In the experiments described below, the site spe-
cific surface roughness characteristics are estimated 
using the specifications by Brotzge and Weber (2002) 
(e.g., surface dynamic roughness zo = 0.004 m). The 
seasonal mean surface-deep layer soil temperature dif-
ference (Column 3 in Table 1) is estimated using the 
method described by Ren and Xue (2003). Soil and 
vegetation properties at Norman site are also listed in 
Table 1. 
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4. Numerical experiments 
 
The aim of this study is to test the feasibility and 

accuracy of retrieving initial values of the prognostic 
variables of the Interactions Soil Biosphere Atmos-
phere (ISBA, Noilhan and Planton 1989)-like LSM 
through merely minimizing the trajectory difference 
between modeled and observed surface temperatures. 
Both synthetic and real observations are utilized in the 
following numerical experiments. Using synthetic data 
is advantageous for validating an optimization system 
because we can control and know the quality of obser-
vations. Theoretical issues can also be more readily 
addressed by assimilating synthetic data. The ultimate 
goal is to assimilate real and often noisy data where the 
issues of data sparsity also arise. In this section, we 
first discuss synthetic data assimilation, where we pre-
sent mainly heuristic examples to illustrate the mecha-
nism. We will then discuss real data assimilation and 
analyzing related issues. Before proceeding to the 
variational retrieval experiments, the soundness of the 
forward system is first examined.  

a) Forward model verification 

A systematic refinement and verification study had 
been performed for our land surface scheme using 
OASIS data by Brotzge and Weber (2002) and further 
by the current authors (Xue and Ren 2003) from Nor-
man, Oklahoma site, as described in Section 3. Here 
we highlight some of the findings of the model valida-
tion. For these experiments, the surface/skin tempera-
ture, superficial and deep soil moisture values are ini-
tialized with OASIS observations. The deep soil tem-
perature is initialized using OASIS data, according to a 
procedure described in Ren and Xue (2003). The time 
step size used for LSM integration is 30 minutes. The 
model is run in 1-D stand alone mode, with time-
dependent surface atmospheric variables specified us-
ing OASIS measurements. Figure 1 shows that the skin 
surface temperature is predicted accurately, with peak 
value differences being less than 2 K in general. There 
is no apparent phase error and a slight warm bias in the 
prediction is less than 1 K. The time series for deep soil 
temperature (Tdp) indicate that the revisions to the 
force-restore temperature equations (Eq. (1)) are very 
necessary. Otherwise, the deep soil temperature will 
drift upward and tends to assume a same daily average 
as the surface temperature. The time series of the su-
perficial soil moisture measurements show one large 
spike, due to presumable measurement error. We must 
point out that, for the predicted superficial soil mois-
ture appears out of phase from the observation. The 
missing hydrolic lift processes is believed to be the 

cause and a remedy has been proposed in another work 
by the current authors. Because of the shallowness of 
the surface layer (therefore smallness of the effect on 
soil heat capacity), the difference does not affect our 
retrieval in any significant way. The prediction of the 
deep soil moisture (wdp) is rather satisfactory, with the 
drying trend corrected predicted. The model-
measurement difference is less than 0.005 m3 m-3 (ex-
cept at the time of a possibly wrong measurement in 
the afternoon of August 5), the magnitude of typical 
errors of the Campbell Scientific 229-L heat dissipation 
instrument used for soil moisture measurement. For 
this period of simulation, during daytime, our model 
suffers systematic overestimation to both latent (LE) 
and sensible (H) heat fluxes, with peak differences as 
large as 50 W m-2 in H. During nighttime, model over-
estimates H while underestimates LE. The magnitudes 
are however both small (less than 15 W m-2) and well 
within the instrument error ranges for these variables. 

b) Assimilation experiments with synthetic data 

As the initial stage of assimilation system testing, 
using simulated data is beneficial since there are no 
uncertainties associated with model and measurement 
errors. We created the synthetic time series of ground 
temperature and other model state variables and fluxes 
(which are not assimilated but can be used for model 
verification purposes) by sampling a forward run of the 
LSM every half hour. This forward run is the same one 
presented and verified in the previous subsection. The 
initial correct land surface conditions are 
( )0 0 0 0 0

2 2, , , ,sfc g canopyT T w w w = (307.16K, 301.16K, 0.2562 
m3 m-3, 0.2802 m3 m-3, 0.0 m3 m-3), where superscript 
‘0’ means initial value. Although the exact value of 

sfcσ in Eq. (5) is not significant, the measurement un-
certainties are specified as 2K and 0.005 m3 m-3 for soil 
temperature and moisture, respectively, for quantifying 
our initial guess errors of these parameters. 

The first retrieval experiment was done by adding 
a positive error of 0.025 (m3 m-3) to the initial deep soil 
moisture 0

dpw . We choose an assimilation window of 
two days, starting at 00 UTC, August 4, 2000. The time 
series of the adjoint variable are plotted in Fig. 2, for 
the first iteration in the minimization process. Except 
for the adjoint variable corresponding to canopy inter-
ception (which is constantly zero because there was no 
precipitation or dew formation during this period), they 
are plotted from the least sensitive variable (top panel 
ad_Tsfc) to the most sensitive variable (bottom panel 
ad_wdp).  

Except for ad_Tsfc, all of the remaining adjoint 
variables are equal to zero at the end of the assimilation 
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window of two days. The ad_Tsfc at this time holds the 
difference between modeled and synthetically “ob-
served” surface temperature, due to initial deep soil 
moisture error. Mathematically, this is a direct result of 
the terminal condition placed on the adjoint model. 
Physically, this represents the deterministic causal na-
ture of the system, in that perturbations in the state 
variables beyond the assimilation window have no in-
fluence on the cost function. As the adjoint model pro-
ceeds backward in time toward the initial condition, 
each adjoint variable will accumulate information that 
influences the cost function in different ways depend-
ing on their respective roles in the forward dynamic 
system. In a certain sense, the backward marching of 
the adjoint model signifies an information collection 
process that marks the influence of each state on the 
trajectory fitness of Tsfc over this assimilation period. 
Thus, the first usage of this diagram is to identify the 
relative sensitivity among different variables.  

The second goal is to identify the positive or nega-
tive feedback that is triggered by the introduced initial 
condition error. For example, in Fig. 2, we see that the 
most sensitive adjoint variable is the one corresponding 
to deep soil moisture. The positive feedback is accumu-
lated all the way to about 2000 (at the initial time), and 
is more than two orders of magnitude larger than the 
adjoint variables for soil temperature. If the optimiza-
tion scheme is allowed to vary only one specific vari-
able to minimize the cost function, it will surly pick the 
initial deep soil moisture. After analyzing the conver-
gence of the corresponding estimated state variable to 
its actual value (Fig.3), we found that the adjustment to 
wdp is the most significant one, while the adjustments to 
Tsfc and Tdp are insignificant. Similar analysis can be 
applied to any interim time step using the result of Hall 
and Cacuci (1983), i.e., the adjoint variable at any time 
t τ= is directly related to the sensitivity of cost func-
tion to a perturbation in its corresponding state variable 
at that particular time. Thus, we can cross compare 
between states to see which is most important at differ-
ent times during the model integration.  

Fig. 2 indicates the feedback (to the innovation in 
wdp) from Tsfc is a negative one, and is especially sig-
nificant during daytime heating period. Thus, increased 
deep soil moisture increases LE and reduces the energy 
used for heating the ground. The feedback from deep 
soil temperature is similar but with phase shift resulted 
from the larger heat inertia of the deep soil layer. The 
feedback from wsfc is positive, since it may gain (or loss 
less) soil moisture from the capillary effects through 
exchanging with deep soil reservoir. The most sensitive 
period is also during daytime, indicating that the soil 
moisture exchange is passively forced by the 
evapotranspiration process. 

Without model error and with complete surface 
temperature measurements, the minimization is very 
efficient. After three iterations, the cost function is re-
duced to only 0.1 percent the initial value. The itera-
tions were carried out five times before terminating, 
satisfying the smallness of the criteria, which is defined 
as the cost function difference between two adjacent 
iterations.  

With the assimilated model parameters, we inte-
grated the forward model for one more time to obtain 
the state estimates. Figure 3 illustrates how much im-
provement is gained in representing the states by as-
similating merely the ground temperature observations. 
Once the convergence has been reached, the assimi-
lated Tsfc trajectory nearly coincidences with the ob-
served one as expected. The two soil moisture values 
and the deep temperature values, although no corre-
sponding observations for them are assimilated, can 
also be successfully updated, through the model dy-
namics as a bond. Their initial guess trajectory are all 
apparently deviant from the corresponding true trajec-
tories. The surface fluxes are also significantly im-
proved. 

We must emphasize that 0
sfcT is the least sensitive 

variable in this experiment. If the sensitivity channels 
of wsfc and wdp are closed, however, initial value of 
ground temperature experiences large and proper ad-
justment to its true value. Unfortunately, the simulation 
of LE and H using the retrieved temperature values 
( 0

sfcT and 0
dpT ) are both poor (Fig. 4), because the initial 

guess errors associated with soil moistures (panels c 
and d) cannot be effectively removed by adjusting ini-
tial soil temperatures. 

Because the LSM is run in stand alone mode, the 
effects on PBL structure cannot be shown. In reality, 
because of the slow rate at which the deep soil mois-
ture evolves and the limited number of in situ observa-
tions that can be anticipated, the start-up bias is likely 
to persist for weeks. As will soon be seen, the relative 
importance of superficial and deep soil moisture con-
tents depends on site-specific land-cover conditions. 
For less vegetated area, surface soil moisture may play 
a more important role than shown here based on Nor-
man site characteristics. 

For a deeper understanding of the physics, we ex-
amined the contour of the cost function for the assimi-
lation period (figures not shown). We found that the 
cost function sphere is very irregular. For example, for 
the cross-section of wsfc and wdp, the contour of the cost 
function is elongated along wsfc, resulting from the rela-
tive strengths of the evaporation from layer one and 
transpiration from both layers one and two. With the 
actual values of vegetation cover veg=0.75 and root 
depth 1 m and the atmospheric conditions of our se-
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lected period, the transpiration from layer 1 is negligi-
ble and transpiration from layer 2 is about 10 times of 
the evaporation from layer 1. Thus the results are much 
more sensitive to wdp than to wsfc as long as vegetation 
growth is not extremely stressed. The behavior can be 
different for a different set of parameters. For instance, 
if the vegetation coverage is specified close to 0, wsfc 
could be more accurately determined while the infor-
mation on wdp would be degraded. 

Similar experiments are repeated in which errors 
are added to Tsfc, Tdp, and wsfc. The results are summa-
rized in Table 2.  Because the uncertainty in initial sur-
face temperature has least influence on the ensuing 
surface temperature evolution, it is most difficult for 
the minimization scheme to pinpoint the exact initial 
value of surface temperature. On the contrary, the deep 
soil moisture has the strongest influence to the surface 
temperature evolution, thus is the easiest one to re-
trieve. This is also consistent with our nonlinear sensi-
tivity experiments evaluating the influence of each 
surface parameter on surface fluxes and ground surface 
temperature. We found LE, H and Tsfc are very sensi-
tive to the soil water contents, and the influence lasts 
longer than ten days for a reasonable perturbation on 
deep soil moisture and barely one day for superficial 
soil moisture. For the evolution of Tsfc, the influence of 
initial value uncertainty of deep temperature is much 
low and the one of Tsfc itself is quite insignificant.  
Viewing form another angle, the initial guess error 
associated with surface temperature is least important 
and the initial errors in soil moisture are far more im-
portant in affecting the surface temperature. Assimila-
tion scheme for initial land surface conditions should 
concentrate on the better estimation of soil moisture 
conditions. 

Now, the control variables 

( )0 0 0 0 0,  ,  ,  ,  
T

sfc dp sfc dp canpT T w w w  are perturbed simultane-

ously by ( )3 -3 3 -3-1.0 , 0.5 ,-0.02  , 0.01  ,0.0
T

K K m m m m+ + , 
or starting from an initial guess vector 
of ( )3 -3 3 -3306.16K,301.66K,0.2362 m m ,0.2902 m m ,0.0

T
. 

It takes the optimization scheme 8 steps to converge to 

( )3 -3 3 -3306.16 ,  301.66 ,  0.2613 ,  0.2803 ,  0.0
T

K K m m m m
 as shown in Fig. 5. The root mean square error (rms) 
in surface temperature prediction was reduced to 7.5% 
of its initial amount (Fig. 5a). 

In addition to the case shown in Fig. 5, other sce-
narios were tested with different perturbation magni-
tudes. In general, the estimated values were robust for 
reasonable perturbations in the prior values. If the per-
turbations are too large, however, there can be other 
estimates that reproduce the measured ground tempera-

ture but are different from the actual state of the system 
(i.e., solution bifurcation). This ambiguity can be re-
duced in actual application for coupled runs by intro-
ducing other observations to the cost function, i.e., 
PBL atmospheric measurements. 

Robustness is also an issue, especially for using 
real data, where model error is usually involved. We 
tested the robustness of the assimilation scheme by 
adding zero mean Gaussian noise of different standard 
deviations (std) to the synthetic observations of Tsfc. 
The final degree of closeness as measured by the cost-
function degrades with increasing noise level. Figure 6 
is the case for retrieving initial conditions starting from 
a perturbation to the control variable vector 
by ( )3 3 3 31 , 0.5 , 0.02 ,0.025 ,0

T
U K K m m m mδ − −= − − .  

The initial value retrieval does not work as the noise 
level surpasses 2.0K std. This also attests to the impor-
tance of our modification to the original force-restore 
scheme shown in section 2a). Although the effects on 
surface temperature prediction is small (generally less 
than 1 K), as will soon be shown, our modification is 
vital for a successful retrieval by assimilating real ob-
servations. 

c) Assimilation experiments with real measurements 

In contrast to using synthetic data, two more diffi-
culties must be dealt with for real data assimilation, 
namely, data sparseness and model error. We use 
OASIS measures Tsfc time series of 8 days long (00Z, 
04-12 August 2000) in the following experiments ex-
cept for those explicitly stated. 

Using complete observations, after 5 iterations, the 
initial guess errors (Fig. 7) can be effectively removed, 
especially those associated with soil moistures. We 
also performed two other experiments assuming data 
availability at a 6-hour wide window centered on local 
noon (~18Z at Norman site) and a 3-hour wide window 
centered at local midnight (~06Z at Norman site). The 
first is called daytime assimilation and the second 
nighttime assimilation. We compared the assimilation 
results of both soil temperatures and surface fluxes (LE 
and H). The nighttime assimilation yields worse esti-
mations for all the quantities (Fig. 7b and c). It misrep-
resented the peak values of surface temperature and 
accordingly severely underestimated the sensible heat 
flux, although the nighttime surface temperature itself 
is simulated rather well and the initial guess error de-
creased by 80%, the best among the three sampling 
schemes. The errors in LE and H seem systematic (for 
clarity, the 8-day period is bisected into two panels).  

This has important implications for understanding 
that some phases of daily cycle are more informative 
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for retrieval scheme, with the caveat that measuring 
scheme performance from only the convergence rate of 
the cost function is very uncertain. For example, the 
readers are cautioned not to compare the convergence 
rate as shown in Fig. 7d, because, except for the com-
plete assimilation case, only those periods with obser-
vations (see Fig. 7a for sampling schemes) are used in 
composing the cost function, not the whole period. In 
reality, except for intense field measurements, we usu-
ally do not know the complete time series of Tsfc, since 
only a couple passes are made by one satellite observa-
tion platform per day.  

We did not find the daytime periods especially in-
formative for experiments with synthetic data. The 
reason why the selected daytime period are more in-
formative for real observations assimilation may be 
because the signal to noise ratio is high for that period, 
when the forcings are steadily strong. In other words, 
the weak signal during nighttime tends to be inundated 
by the instrument errors. We tested a series of assimila-
tion windows which are of equal length (3 hours) and 
adjacent to each other (3 hours apart) and together 
cover the whole daily cycle.  To our surprise, the 
quickly heating up period (early morning hours) is the 
worst assimilation period. We repeated this experiment 
by varying the window length from 1 hour (2 meas-
urements) to 6 hours (12 measurements). Although 
there are very noisy periods when the assimilation 
window is narrow, the general pattern is nearly the 
same for all cases. 

Figure 8 illustrates the effects of assimilation pe-
riod length. Using OASIS measurements, we per-
formed three retrieval experiments with respective as-
similation period of 2, 4, and 8 days, all starts from 
00Z, 4 August 2000. Using retrieved initial conditions, 
an extra forecasting period of 8 days was made for 
each experiment. The shared forecasting period, i.e., 
00Z, 12 August-00Z, 14 August, is shown here. The 
forecasts for the prognostic model variables (wsfc and 
wdp are not shown for clarity) are best from using the 
initial conditions retrieved from Tsfc contained in 8 
days. This agrees with our assertion about the informa-
tion redundancy. To overcome the noisy signal con-
tained in the observations, the quantity of observation 
matters. To have a deeper understanding, we also cal-
culated rms errors for this forecasting period. The rms 
errors for using assimilation periods of 2, 4 and 8 days 
are respectively 1.96, 1.92 and 1.36K for Tsfc; 0.98, 
0.95 and 0.55 for Tdp; 0.016, 0.015 and 0.0037 m3 m-3 
for wsfc; 0.02, 0.019 and 0.003 m3 m-3 for wdp; 34, 32, 
and 20 W m-2 for H; and 33, 32 and 19 W m-2 for LE. 
With the increased assimilation period, the estimations 
for the initial conditions of the two soil moistures are 
most significantly improved, followed by deep soil 
temperature and by surface temperature. As a result, 

the estimations for both latent and sensible heat fluxes 
are significantly improved.  

5. Conclusions 
 
In this study, based on a two-layer soil model and 

its adjoint, a rather general 4DVARdata assimilation 
framework for retrieving land surface variables is im-
plemented. The adjoint model is used in this variational 
data assimilation framework to yield dynamically con-
sistent estimates of land surface states and fluxes that 
optimally merge observations with the physical model.  
We performed retrieval experiments for soil state vari-
ables and verified the results against OASIS data. Good 
results were obtained by retrieving the initial soil tem-
perature and moisture using the reduced 4DVAR sys-
tem when the soil skin temperature in the assimilation 
window is known. Tests were done with both model-
simulated and OASIS-measured data.  

In the experiments with synthetic data, the primary 
goal was to demonstrate the capability of the adjoint 
model as a general tool for sensitivity analysis and data 
assimilation. We have used simple illustrative exam-
ples of each type of application to give a glimpse of the 
kind of problems that can be addressed using the model 
and its adjoint. We first showed that the assimilation 
works for the initial value retrieval for perturbations 
larger than the corresponding instrumentation errors. 
Because the number of control variables is small, large 
information redundancy makes the retrieval very effi-
cient. Based on our LSM, we also tested the robustness 
of the estimation scheme by adding random white 
noise to the synthetic surface temperature time series. 

For real OASIS measurements assimilation, initial 
soil moisture conditions can be successfully retrieved, 
even though half-hourly surface temperature observa-
tions are only available for a narrow 6-hr window cen-
tered at local noon.  However, assimilating only night-
time surface temperatures causes poor retrieval results. 
Further investigation shows that the stronger daytime 
signal to noise ratio explains why daytime periods are 
more informative. 

We examined several outstanding issues in this 
land surface data assimilation study. If all sensitivity 
channels are open, it is shown that the data assimilation 
system for the surface ground temperature is capable of 
accurately estimating the components of the surface 
energy balance. This holds for assimilating both syn-
thetic data and real observations. As long as all the 
sensitivity channels are open, the scheme is able to 
differentiate the sources of sensitivity. These successful 
results are a consequence of the explicit inclusion of 
the vegetation transpiration process (whereas the sim-
ple schemes such as Xu and Zhou (2003) lack this) and 
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the proper initialization of deep soil temperature in our 
general land surface data assimilation scheme.  

We analyzed the assertions of Li and Islam (2002) 
and Boni et al. (2001) and found that both may be cor-
rect since the field site used by Boni et al. (2001) is 
much less vegetated and consequently the ground 
evaporation overwhelms the transpiration process. For 
a bare ground surface, the soil moisture availability 
may be the single most important parameter that affects 
the simulation of the ground latent heat flux. For a 
highly vegetated area, however, the surface moisture 
flux is generally dominated by evapotranspiration. The 
key parameters for realistic simulation of evapotranspi-
ration are then root zone soil moisture content and the 
canopy resistance. As a conclusion, we believe that for 
a less vegetated area, because deep soil moisture (i.e., 
deeper than 50 cm, Deardorff, 1978) seldom varies on 
a daily basis, numerical weather forecasting, especially 
for the warm season precipitation, requires an accurate 
description of the surface soil moisture content and 
hence an improved knowledge of how the net radiation 
is partitioned among latent, sensible and ground heat 
fluxes. On the other hand, because of the slow rate at 
which the deep soil moisture evolves and the limited 
number of in situ observations that can be anticipated, 
the start-up bias is likely to persist for weeks. With 
surface temperature observations, variational data as-
similation is good at determining the value of the deep 
soil moisture.  

Acknowledgement 
 

This work was supported by a DOT-FAA grant, 
and by NSF grants ATM9909007 and ATM0129892 to 
the second author. The authors thank Dr. Jidong Gao 
for discussions on adjoint code development and Dr. 
Jerry Brotzge for making available the OASIS data set 
and for very helpful discussions on the related issues. 

References 
 

Bhumralkar, C. M., 1975: Numerical experiments on 
the computation of ground surface temperature in 
an atmospheric general circulation model, J. Appl. 
Meteo., 14, 1246-1258. 

Blackadar, A. K., 1976. Modeling the nocturnal 
boundary layer. Prec. Third Symp. Atmos. Turb., 
Diffusion and Air Quality, Boston, Amer. Metero. 
Soc., 46-49. 

Boni, G., Castelli, F.,  Entekhabi, D.,  2001. Sampling 
strategies and assimilation of ground temperature 
for the estimation of surface energy balance com-
ponents, IEEE Transactions on Geosciences and 
Remote Sensing, 39(1), 165-172. 

Brotzge, J. A., Weber, D., 2002. Land-surface scheme 
validation using the Oklahoma atmospheric sur-
face layer instrumentation system (OASIS) and 
Oklahoma Mesonet data: preliminary results, Me-
teo. Atmos. Phys., 80, 189-206. 

Brotzge, J. A., 2000.  Closure of the surface energy 
budget.  PhD dissertation, School of Meteorology, 
University of Oklahoma, Norman. 208 pp 

Calvet, J.-C., Noilhan, J., Bessemoulin, P., 1998. Re-
trieving the root-zone soil moisture from surface 
soil moisture or temperature estimates: A feasibil-
ity study based on field measurements. J. Appl. 
Metero., 37, 371-386. 

Clapp, R. B., Hornberger, G. M., 1978. Empirical 
equations for some soil hydraulic properties. Wa-
ter Resour. Res., 14, 601-604. 

Deardorff, J. W., 1978. Efficient prediction of ground 
surface temperature and moisture, with inclusion 
of a layer of vegetation, J. Geophys. Res., 83(C4), 
1889-1903. 

de Vries, D. A., 1963. Thermal properties of soils. 
Physics of Plant Environment, W. R. V.  Wijk, 
Ed., John Wiley & sons, Inc, 210-235. 

Hall, M., Cacuci, D. G., 1983. Physical interpretation 
of the adjoint functions for sensitivity analysis of 
atmospheric models. J. Atmos. Sci., 40, 2537-
2546. 

Henderson-Sellers, A., McGuffie, K., Pitman, A. J., 
1996. The Project for Intercomparison of Land-
Surface Parameterization Schemes (PILPS): 1992 
to 1995, Climate Dynamics, 12, 849-859. 

Henderson-Sellers, A., A. J. Pitman, P. Irannejad, and 
K. McGuffie, 2002: Land-surface simulations im-
prove atmospheric modeling. EOS, Trans, AGU, 
83, 145-152. 

Idso, S.B., Reginato, R. J., Jackson, R. D., Kimball, B. 
A., Nakayama, F.S., 1974: The three stages of dry-
ing of a field soil. Soil Sci. Amer. Proc., 38, 831-
837”. 

Jackson, T. J., Southern Great Plains 1997 (SGP97) 
Hydrology Experiment Plan,  
http://hydrolab.arsusda.gov/sgp97/. 

Jones, A., T. Vukicevic, and T. H. Vonder Haar, 2003: 
A microwave satellite observational operator for 
variational data assimilation of soimoisture. J. Hy-
drol. Meteorology (Submitted). 

LeDimet, F. X., and O. Talagrand, 1986: Variational 
algorithms for analysis and assimilation of mete-
orological observations-Theoretical aspects, Tel-
lus, 38A, 97-110. 

Li, J., and S. Islam, 2002: Estimation of root zone soil 
moisture and surface fluxes partitioning using near 
surface soil moisture measurements. J. Hydrology, 
259, 1-14.  



 11

Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus, 
1949: Applied Hydrology. McGraw-Hill., 689pp. 

Mahfouf, J.-F., 1991. Analysis of soil moisture from 
near-surface parameters: A feasibility study. J. 
Appl. Meteror., 30, 1534-1547. 

Mahfouf, J.-F., and P. Viterbo, 2001: Land surface 
assimilation. ECMWF Meteorological training 
course lecture series (Printed in March, 2001), pp. 
1-23. 

Margulis, S. A., Entekhabi, D., 2001. A coupled land 
surface-boundary layer model and its adjoint, 
Journal of Hydrometeorology, 2(3), 274-296. 

Nijssen, B., R. Schnur, and D. P. Lettenmaier, 2001: 
Global retrospective estimation of soil moisture 
using the variable infiltration capacity land surface 
model, 1980-1993. J. Climate, 14, 1790-1808. 

Noilhan, J., Planton, S., 1989. A simple parameteriza-
tion of land surface processes for meteorological 
models. Mon. Wea. Rev., 117, 536-549. 

Noilhan, J., and J.-F. Mahfouf, 1996: The ISBA land  
surface parameterization scheme. Global and 
Planetary Change 13, 145-159. 

Navon, I. and D. Legler, 1987: Conjugate-gradient 
methods for large-scale minimization in meteorol-
ogy. Mon. Wea. Rev., 115, 1479-1502. 

Pleim, J. E., and A. Xiu, 1995: Development and test-
ing of a surface flux and planetary boundary layer 
model for application in mesoscale models.  J. 
Appl. Meteor., 34, 16-32. 

Qu, W., and coauthors, 1998: Sensitivity of Latent 
Heat Flux from PILPS Land-Surface Schemes to 
Perturbations of Surface Air Temperature. J. At-
mos. Sci., 55, 1909–1927. 

Ren, D. and M. Xue, 2003: An improved force-restore 
model for land-surface modeling. J. App. Meteor., 
Under review.  

Schaake, J., and coauthors, 2002: An intercomparison  
of North American LDAS soil moisture fields. Ab-
stract Volume, Mississippi River Climate and Hy-
drology Conf., New Orleans, Louisiana. 

Talagrand, O. and P. Courtier, 1987: Variational as-
similation of meteorological observations with the 
adjoint vorticity equation. Part I: Theory. Quart. J. 
Roy. Meteor. Soc., 113, 1311-1328. 

Xiu, A., Pleim, J., 2001. Development of a land surface 
model. Part I: Application in a Mesoscale Mete-
orological Model, J. Appl. Meteror., 40, 192-208. 

Xu, Q., and B. Zhou, 2003: Retrieving soil moisture 
from soil temperature measurements by using lin-
ear regression. Advances in Atmospheric Sciences, 
Vol. 20, No.6 (in press). 

Xue, M., Droegemeier, K. K., Wong, V., 2000. The 
Advanced Regional Prediction System (ARPS) - A 
multi-scale nonhydrostatic atmospheric simulation 
and prediction model. Part I: Model dynamics and 
verification. Meteor. Atmos. Phys., 75, 161. 

Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. 
Brewster, F. Carr, D. Weber, Y. Liu, and D.-H. 
Wang, 2001: The Advanced Regional Prediction 
System (ARPS) - A multiscale nonhydrostatic at-
mospheric simulation and prediction tool. Part II: 
Model physics and applications. Meteor.  Atmos. 
Physics, 76, 143-165. 

Xue, M., and D. Ren, 2003: Testing of several recent 
modifications to ARPS land surface model, 
JP4.16, 18th Conference on Hydrology, 84TH AMS 
annual meeting, Seattle, WA 11-15 January 2004.  

Ziegler, C. L., T. J. Lee, and R. A. Pielke, Sr., 1997: 
Convective Initiation at the Dryline: A Modeling 
Study. Mon. Wea. Rev., 125, 1001-1026. 

 
 



 

 12

Table 1.  Norman OK site parameters during the period of 4-27 August 2000* 
 

 
sfcT  (K) sfcT - dpT  (K) A0 (K) Adp (K)  

(08/04-08/11) 306.04 5.49 9.7 0.51  
(08/12-08/19) 306.70 4.70 13.5 0.96  
(08/20-08/27) 307.60 5.46 13.8 1.20  

 
veg Rsmin(s m-1) RG(W m-2) wfc (m3 m-3) wsat (m3 m-3) wwilt (m3 m-3) 
0.75 100 30 0.326 0.45 0.22 

b CGsat(K m2 J-1) z0(m) d1(m) d2 (m) CGV(K m2 J-1) 
4.9 2.56 ×10-6 0.004 0.1 1.0 1.5 ×10-5 

      
*Infrared surface temperature data are used in calculating the soil temperature parameters (Nota-
tions follow Ren and Xue 2003). The notation for static soil and vegetation parameters follow 
NP89. 
 
 
 
 

Table 2.  List of initial state retrieval experiments using synthetic data 
 

Retrieved initial condition Initial guess 
for control  

variable 

Initial  
rms error 

Jfinal/J0 # iterations 
needed Tsfc Tdp wsfc wdp 

0.310 0.153 17 306.76 301.23 0.25 0.280 Tsfc+3.0K 
      -3.0K 0.315 0.65 40 305.80 301.14 0.25 0.280 

0.154 0.25 12 307.16 303.16 0.29 0.280 Tdp+2.0K 
     -2.0K 0.157 0.3 11 307.16 299.16 0.23 0.280 

0.042 9.7E-5 7 307.16 301.16 0.256 0.280 wsfc+0.01 
     -0.008 0.035 3.4E-7 8 307.16 301.16 0.256 0.280 

1.2 8.7E-11 4 307.16 301.16 0.256 0.280 Wdp+0.01 
      -0.01 0.94 2.4E-10 4 307.16 301.16 0.256 0.280 
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Fig. 1. Model predicted vs. observed (OASIS) soil temperature (Tsfc and Tdp), moisture (wsfc and wdp), 
and surface energy fluxes (H and LE). The curves labeled ‘original’ are for model predictions with the 
γ terms in Eq.(1), terms added by Ren and Xue (2003). 
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Fig. 2. The time series of adjoint variables from wdp+0.025 at the first iteration of the 
minimization. Each adjoint variable is marked by its corresponding state variable 
with an ad_ prefix. 
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Fig. 3. Comparison of actual state variables and latent and sensible heat fluxes (synthetic) 
with those using prior (initial guess) and estimated using retrieved values (assimilated). 
Only ground surface temperatures are assimilated. 
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Fig. 4. Only temperature sensitivity channels are open for the assimilation. Although 
surface temperature time series are accurately retrieved, the surface fluxes are at sys-
tematic errors. 
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Fig. 5. The case of simultaneously perturbing the control variables. (a) reduction in cost function 
and the norm of gradient vector; (b) the time series of adjoint variables at the first iteration; (c) 
comparison between trajectories resulted from prior guess initial conditions and retrieved values; 
and (d) the convergence of the control variables to the “true” values. This experiment is done us-
ing an initial guess state vector: ( )3 -3 3 -3306.16K, 301.66K, 0.2362 m m , 0.2902 m m , 0.0

T
U = . 

 



 

 18

 

Fig. 6. Robustness of the assimilation scheme. Panel a is produced using 
Uδ =(-1.0K, 0.5K, -0.02 m3m-3, 0.025 m3 m-3, 0…)T. The white noise is of 

0.05, 0.1, 0.5, and 2.0 K, respectively. 
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Fig. 7. Sampling strategy experiments. Panel (a) shows the three sampling scheme: The continuous sam-
pling (dotted line), daytime (triangular sign), and the nighttime sampling (circle with vertical bar). Panels 
(b) and (c) show the respective accuracy in estimation soil temperatures and surface fluxes. Panel (d) indi-
cates the decreasing of the cost-function for these three sampling schemes.  
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Fig. 8. The effects of assimilation window length. Three experiments with respective 
assimilation period of 2 (ass. win. 2 days), 4 (ass. win. 4 days), and 8 days (ass. win. 8 
days), all starts from 00Z, 4 August 2000, are performed. For each experiment, using 
retrieved initial conditions, a forward model run is made to produce an extra forecast-
ing 8 days long (forecasting periods follows immediately the assimilation periods). The 
shared forecast period, i.e., 00Z, August 12-14, is shown here. Real OASIS observa-
tions are used in these experiments for initial conditions retrieval. The initial guess er-
rors: ( )3 3 3 31.0 , 0.5 , 0.03 ,0.01 ,0.0

T
U K K m m m mδ − −= − − . 

 
 
 


