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ABSTRACT 
 
Electricity markets in the United States are 
evolving. Accurate wind power forecasts are 
beneficial for wind plant operators, utility 
operators, and utility customers. An accurate 
forecast allows grid operators to schedule 
economically efficient generation to meet the 
demand of electrical customers. The evolving 
markets hold some form of auction for various 
forward markets, such as hour ahead or day 
ahead. While the longer-term forecasting relies on 
numerical weather models, this paper describes 
several statistical forecasting models that focus on 
short-term forecasts that can be useful in hour-
ahead markets. The purpose of the paper is not to 
develop forecasting models that can compete with 
commercially available models. Instead, we 
investigate the extent to which time-series analysis 
can improve simplistic persistence forecasts. This 
project applied a class of models known as 
autoregressive moving average (ARMA) models to 
both wind speed and wind power output. The 
ARMA approach was selected because it is a 
powerful, well-known time-series technique and 
has been used by the California Independent 
System Operator in some of its forecasting work. 
The results from wind farms in Minnesota, Iowa, 
and along the Washington-Oregon border indicate 
that statistical modeling can provide a significant 
improvement in wind forecasts compared to 
persistence forecasts. 
 
1. INTRODUCTION 
 
In some electricity markets, wind is becoming a 
significant source of energy. As the contribution of 
wind power plants continues to grow, the impact of 
wind on various aspects of power system 
operation receives greater scrutiny. Because wind 
is an intermittent power source, these operational 
impacts are unlike those of other power plants. 

This intermittent characteristic of wind power 
generation means that efficient power system 
operation will depend in part on the ability to 
forecast available wind power.  
 
This paper examines the use of a standard class 
of statistical time-series models to predict wind 
power output up to 6 hours in advance. The 
purpose is not to develop models to compete with 
commercial forecasting models, such as those 
described in Bailey (1999) or Landberg (1997). 
Rather, our goal is to investigate the feasibility of 
relatively inexpensive statistical forecasting 
models that do not require any data beyond 
historical wind power generation data. This may 
limit the ability and the usefulness of this type of 
forecasting model, but for small wind farms that 
are unable to participate in formal forecasting 
projects, it might be desirable to use a statistical 
model that can be developed and used at lower 
cost. 
 
For this project, we used data collected from 
operating wind power plants in Minnesota and 
Iowa, along with Bonneville Power 
Administration’s (BPA’s) Stateline project along 
the Washington-Oregon border. We found some 
differences in model performance at the three 
sites, which was expected because of the different 
climatic regions. Wan (2002) described some of 
the data used for this project. A more complete 
report on our forecasting results can be found in 
Milligan (2003). 
 
 
2. STATISTICAL MODELING FRAMEWORK 
 
Although many time-series methods could be 
applied to this problem, a general class of models 
known as autoregressive integrated moving 
average (ARIMA) models is applied in this paper. 
Similar models have been applied by Makarov 



(2002), Nielsen (1999), and Kariniotakis (1997). 
ARIMA models have up to three components: 
autoregressive, integrated, and moving average. 
When the second component provides no 
significant explanatory power in the model, it is 
dropped. We found the integration term to be 
unimportant in this analysis, so it was dropped. 
The resulting model is known as ARMA, and can 
be characterized as 
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The equation states that a realization of the time-
series X at time t depends on a linear combination 
of past observations of X plus a moving average of 
series e, which is a white-noise process 
characterized by zero mean and constant 
variance. The time series X is known as an 
ARMA(p,q) process, where p is the order of the 
autoregressive process of X on itself and q is the 
order of the moving-average error term. The AR 
term allows us to capture the previous p wind 
power values, and the MA term involves the use of 
the prior q error terms to help improve the 
forecast. 
 
Interested readers can consult Box (1976) for 
details of well-known methods for applying ARMA 
models in practice. After estimation, the model can 
be checked with several diagnostics. It is not 
uncommon for a promising model identification to 
lead to a poorly performing model, so the 
diagnostic phase is important because it weeds 
out models that do not work well. We found many 
such models during this project. We chose to 
present results for similar models whenever the 
model forecasting performance improved upon the 
persistence model. 
 
3. METRICS 
 
A well-known method of forecasting wind is the 
simplistic persistence method. This approach uses 
the past hour wind speed (or wind power) as the 
forecast for the next hour. As a forecasting 
technology, this method is not impressive, but it is 
nearly costless and can perform surprisingly well 
for 1 to 3 hours ahead. Therefore, any forecast 
method first should be measured by the extent it 
can improve on persistence forecasts. This 
approach is applied in this paper.  The persistence 
forecast can offer a range of forecasting accuracy, 
depending on the wind regime and the number of 

periods to be forecast. In this project, we 
calculated the root mean square error (RMSE) of 
each forecast over the relevant time period to 
compare our methods with the persistence model. 
A lower RMSE implies that the forecast is more 
accurate, whereas a high RMSE value implies less 
accuracy. 
 
We are interested in how well ARMA models can 
forecast more than 1 hour in advance. We applied 
our forecasting techniques up to 6 hours ahead, 
which is approximately the limitation of purely 
statistical forecasting methods.  
 
4. HOURLY POWER FORECASTS 
 
We evaluated the model performance on different 
data than were used to train (fit the parameters) 
the model in each of the forecasting cases we 
examined. A number of different training periods 
were applied so that we could see how this would 
affect the forecasting performance. In all cases 
discussed in this section we refer to the training 
period as a fixed-window period. The next section 
discusses the use of a dynamic training period 
with a moving window that is adjusted for each 
hour. 
 
We used actual wind power data from Lake 
Benton 2 (LB), Minnesota (located in the 
southwest part of the state), as our primary source 
in this project. We also compared some of the LB 
forecasts with forecasts at Storm Lake (SL), Iowa 
(located in northwestern Iowa), and from BPA’s 
Stateline project on the eastern Washington-
Oregon border. Data from LB and SL are collected 
at the National Renewable Energy Laboratory 
(NREL) and are described more fully in Wan 
(2002). Data from LB and SL are from 2001, and 
data from the BPA site are from 2002. 
 
Decisions must be made regarding how to develop 
statistical hourly power forecasts to analyze their 
accuracy. One of the most important decisions is 
the selection of the training period for the 
forecasting algorithm. In some of our initial 
screening work using the LB data, we calculated 
separate time series for 10 months, training the 
model for the first 2 weeks and calculating 
forecasts for the remainder of the month. The 
statistical evidence showed a significant difference 
in the ARMA model specifications that were 
calculated in each of the training periods. This 
finding is not surprising because it provides 
evidence of statistically significant variations in 
wind generation patterns at different times of the



 
Figure 1.  Lake Benton 2 kW forecasts: January/February 2001. 

 

 

Figure 2.  Storm Lake kW Forecasts: January/February 2001. 



year, and these differences are important in 
developing a forecasting model. 
 
The first set of cases used wind power data from 
January-February 2001. The data from January 
were used to train the model, and hourly forecasts 
were developed for the month of February. Each  
forecast predicted the 6-hour period ahead. The 
model results were compared with the persistence 
model, which was also applied to the same time 
periods. In many cases, the ARMA forecasting 
results were similar for different model 
specifications. We report results for forecast 
models that did improve over persistence. 
 
Figure 1 illustrates the forecasting cases for LB. 
The graph shows the ratio of the persistence 
RMSE to the ARMA RMSE for several alternative 
ARMA model specifications. Higher ratios indicate 
better ARMA performance, and ratios less than 1 
would indicate that persistence does a better job 
of forecasting than the ARMA model. The best 
overall model specification is the ARMA(1,24), 
which improves on persistence by approximately 
7% in the first hour, increasing to approximately 
18% in the sixth hour. However, the ARMA(2,12) 
model does slightly better in the first hour. 
 
A similar set of forecasting models was applied to 
the same time period at SL. The same model 
specification, the ARMA(1,24), performed the best 
overall. However, it is worth noting that the 
ARMA(1,2) model was best in the 1-hour forecast, 
whereas the ARMA(1,24) model was better from 2 
hours out to 6 hours. This suggests the possibility 
of using an ensemble of ARMA models, 
depending on the forecast performance of different 
model specifications for different forecast 
horizons. The SL results appear in Figure 2. 
 
Unfortunately we were not able to complete 
forecasts for all sites for the same time period. 
Figure 3 shows the results from Stateline using 
January and February data, but from 2002. In 
contrast to the other sites, the best overall 
forecasting performance was obtained from the 
ARMA(0,24) case, although the ARMA(1,12) 
specification performed slightly better for the first 
hour. 
 
The ARMA forecasts at all wind sites eroded 
significantly as the number of forecast periods 
increased, although the SL results were slightly 
better than the LB results. As measured by the 
RMSE, the forecast error for LB nearly tripled from 

the 1-hour forecast to the 6-hour forecast, and the 
SL results were similar. For Stateline, the forecast 
errors were between those at the other two sites, 
and the degradation in RMSE is also apparent. 
Figure 4 depicts the ratio of RMSE to rated 
capacity as a function of the length of the forecast 
period. In all cases the model with the best 
improvement over persistence was chosen for the 
graph. The model specification for LB and SL are 
both ARMA(1,24), whereas the Stateline model is 
ARMA(0,24). When the results from Figures 1, 3 
and 4 are compared, it is also apparent that 
RMSE(arma) at Stateline is better than the 
RMSE(arma) at LB, yet the ARMA forecast model 
at LB provides a more significant improvement 
over persistence than the ARMA model at 
Stateline.  
 
We also investigated additional periods during 
2001 and changed the lengths of the training and 
testing intervals. Figure 5 shows an example of LB 
for April 2001.  For this case, a 3-week training 
period was used, and the remaining hours of the 
month were used to test the forecast. For this 
period, it is apparent that the suite of tested 
models did improve on persistence, but not to the 
same degree as the January-February cases.  
 
5. DYNAMIC TRAINING PERIODS 
 
Because of the apparent forecast model sensitivity 
to time of year, we also applied a dynamic training 
period to some of the LB cases. A more complete 
study than ours might look at a wide range of 
dynamic training periods, ranging from perhaps 1 
week to several weeks. Although our original study 
used several time periods and training periods, we 
report on two cases here. The first case used a 
sliding 2-week training period. A set of 6 hourly 
forecasts was calculated. Then the training period 
was shifted forward by 1 hour, dropping the first 
hour and adding the most recent hour. With this 
new training period the model was recalculated 
and the next 6 hours were forecast. The process 
continues until forecasts were completed thru the 
month of April. A similar process was applied to 
the same time period, but we used a 3-week 
training period instead of a 2-week training period. 
 
Several alternative model specifications improved 
upon persistence. For clarity, we selected the 
best-performing model from each training period. 
Coincidently, the best-performing models both 
have ARMA(2,1) specifications. The results 
appear in Figure 6. The results indicate that the 2-  



  
Figure 3.  Stateline kW forecasts: January/February 2002. 

 
 

 
 
Figure 4.  Forecast degradation: January/February 2001. 
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Figure 5.  Lake Benton 2 kW forecasts: April 2001. 

 
 
 

 

 
Figure 6.  Lake Benton 2 kW forecasts: dynamic training, March-April 2001. 

 
 
 
 
  



week training period offers a modest improvement 
over the April-only forecasts that were based on a 
fixed window (as shown in Figure 5 above). The 
shorter training period also appears to outperform 
the longer period. 
 
Aside from the statistical performance of the 
models, different training period lengths have 
different tradeoffs between the information 
provided to the model and the constraints that are 
imposed by the model parameters. For example, a 
single ARMA model that is fit over a period such 
as 1 year will potentially have the ability to use a 
great deal of information that is embedded in the 
wind signal. Because different physical 
mechanisms can affect the level of wind resource 
at different times of the year, the variability of the 
wind can also have different statistical properties 
during these periods.   This implies that a large 
number of model parameters may be needed to 
fully describe the process, or that the parameters 
could be a function of time. Partitioning the year 
into a number of distinct time periods allows the 
model parameters to be re-fit to account for 
different climatological properties during different 
times of the year. Choosing too short a period for 
model training could omit some important 
information that would help the model’s 
forecasting accuracy. The ideal training period 
would pick up the important drivers and patterns 
for different times of the year. Parameters based 
on one set of climatic drivers should not be 
imposed on other time periods if it is known that 
another set of climatic drivers affects the wind 
resource. When model training and application 
span a distinct seasonal boundary, for example, 
we expect the forecasting performance to suffer. 
 
The results from using the dynamic training 
periods are complex and not open to easy 
interpretation.  Further investigation into this issue 
is certainly warranted.   
 
6. CONCLUSIONS 
 
The ability of ARMA forecast models clearly differs 
when applied to different time periods. Our 
forecasting models for LB improved on 
persistence more in January-February 2001 than it 
was did March-April 2001. Some of the models 
developed in this paper offer a significant 
improvement over the persistence model. Some 
ARMA models have difficulty reducing the forecast 
RMSE significantly as compared to persistence. In 
some cases, the model that provides the best 
forecast from 1 to 2 hours out is eclipsed by 

another model for longer forecast horizons. This 
raises the possibility of simple ensemble forecasts 
that can offer better forecasting over the horizon 
than a single model specification. 
 
Comparison of the Stateline results with the other 
sites also suggests that improvements over 
persistence do not necessarily correspond to 
overall model accuracy. We found that the same 
model specification for the January/February 
period appeared to work best for LB and SL, with 
an alternative specification for Stateline. Because 
our data are from different time periods, we are 
unable to attribute the model difference to location 
or time. 
 
In several cases, we found many alternative 
ARMA models that did a good job forecasting over 
the testing time frame. We also found it difficult to 
determine the proper identification for several 
models, and that led to the evaluation of 
alternative specifications. It is apparent that a one-
size-fits-all approach may not be the best one, 
based on the apparent sensitivity of the model 
performance to the length of the training period.  
 
7. ACKNOWLEDGEMENTS 
 
This paper was written at NREL in support of DOE 
under contract number DE-AC36-99-GO10337. 
 
8. REFERENCES 
 
Bailey, B., M. Brower, J. Zack (1999). Short-Term 

Wind Forecasting: Development and 
Application of a Mesoscale Model. European 
Wind Energy Conference, Nice, France. 

Box, G. E. P., and G.M. Jenkins (1976). Time 
Series Analysis: Forecasting and Control. San 
Francisco, Holden-Day. 

Kariniotakis, G., N.E. Nogaret, G. Stavrakakis 
(1997). Advanced Short-Term Forecasting of 
Wind Power Production. European Wind 
Energy Conference, Dublin Castle, Ireland, 
EWEA. 

Landberg, L. (1997). Predicting the Power Output 
From Wind Farms. European Wind Energy 
Conference, Dublin Castle, Ireland, EWEA. 

Makarov, Y., D. Hawkins, E. Leuze, J. Vidov 
(2002). California ISO Wind Generation 
Forecasting Service Design and Experience. 
Windpower 2002, Portland, OR, AWEA. 

Milligan, M., M Schwartz, Y. Wan (2003). 
Statistical Wind Power Forecasting Models: 
Results for U.S. Wind Farms. Windpower 
2003, Austin, TX, AWEA. 



Nielsen, T. H. M. (1999). Experiences With 
Statistical Methods for Wind Power Prediction. 
European Wind Energy Conference, Nice, 
France, EWEA. 

Wan, Y., Bucaneg, D. (2002). Short-Term Power 
Fluctuations of Large Wind Power Plants. 21st 
AMSE Wind Energy Symposium, Reno, 
Nevada, NREL/CP-500-30747 (preprint). 


