
6.5 NONLINEAR EMPIRICAL MODELING

Sue Ellen Haupt
Utah State University, Logan, UT

1. INTRODUCTION

Empirical models have gained popularity in

recent years as an alternative to the more
traditional dynamical models (for example see
Hasselman 1988, Penland 1989, Branstator and
Haupt 1998). Linear empirical models are easy to
produce from data using standard least squares
inversion techniques. Numerical modeling of time
dependent flows has traditionally involved using
some type of time stepping combined with known
dynamics discretized from a partial differential
equation. However, sometimes the details of the
dynamics are not sufficiently known or we wish to
develop a model that reproduces dynamic behavior
without involving the details of the full equations
of motion. In such cases, we can substitute an
empirical model based on observed data. These
stochastic empirical models are built from
measured or simulated data and are based on a
Markhov model. Given a sufficient amount of data
to develop the model, the discretized dynamics of
the traditional model can be replaced by a matrix of
computed values that serve as a propagator matrix.

However, for highly nonlinear fluid dynamics
problems, linear models are no longer adequate. In
these cases, a nonlinear term is often necessary to
capture the dynamics. Since in fluid dynamics
nonlinearity often enters as the quadratic advective
term, the nonlinearity of the empirical model is
also likely to be of quadratic form. Achatz and
Branstator (1999) added nonlinear terms based on
the dynamics of the problem to form a hybrid
between the dynamics (nonlinear terms) and an
empirical model (linear terms). Here, we seek to
add the nonlinear terms empirically. Unfortunately,
nonlinear models are more difficult to devise due
to the introduction of higher order tensors to the
problems. We resolve this issue through redefining
the problem in terms of optimization and directly
searching for the propagator matrix given the data
using an artificial intelligence technique such as a
genetic algorithm (GA).

* Corresponding author address: Sue Ellen
Haupt, Computational Mechanics Division,
Applied Research Laboratory, Penn State
University, Post Office Box 30, State College, PA
16804; email: suehaupt@engineering.usu.edu

2. MODEL FORMULATION

Linear Empirical Models

First, we introduce the linear, time-varying
model, which can be written in the form:

ξ
vvr

+= sB
dt
sd

 (1)

where: sv is the N-dimensional state and can
represent states such as velocities at various
locations or the spectral coefficients of the velocity

dt
sdv

 is the time rate of change of the state

 B is a linear NN × matrix that relates the
above two

 ξ
v

 is a vector of white noise (denoting the
error in the fit)

The dynamics are contained in the matrix, B.

Nonlinearities are parameterized by corrections to
B as well as within the noise portion of ?. This
simple linear form is easily fit using standard
analytical techniques to minimize the least square
error between the model and time series data.
These techniques involve minimizing the square of
the error between the model and the time averaged
data tendencies. Specifically, we wish to minimize
the noise vector (equivalently, the error). We
assume that sv behaves as a Markov process. We
can minimize the error in a least square sense by
requiring that:



















 −=

2

sB
dt
sd

E
vr

 is minimized (2)

The parentheses represent a spatial averaging

while the angle brackets represent an ensemble
time average. The solution to this problem involves
finding where the derivative vanishes. In doing
this, one computes the covariance and lagged
covariance matrices as:

)()(tsts T=Λ is the covariance matrix,

averaged over time. The superscript (T)
indicates a matrix transpose.

)()(tsts Tττ +=Λ is the lagged

covariance matrix.
τ is the chosen lag time.

Upon solving the least squares problem, we

find:

 ττ /ln 







Λ
Λ

=B (3)

or in terms of an propagator equation, we can
write

)()()(tsGts ττ =+ (4)
where:
)exp()(ττ BG = (5)

Note that the model depends on the value of the

lag, τ , the amount of data used to build it, and the
resolution of the data.

Such linear empirical models often compete
well with linearized dynamical models in
reproducing the statistics of the modeled field. In
addition, much can be learned about the flow
dynamics.

Nonlinear Empirical Models

When the dynamics are highly nonlinear,
stochastic empirical models can also be formulated
using nonlinear dynamics. For instance, a
quadratic empirical model could have the form:

T

ts Cs s Bs ξ= + +
rr r r r

 (6)

The nonlinear interactions now occur explicitly

through the nonlinear third order tensor operator,
C. Thus B is an N x N matrix that serves as the
linear propagator, C is an N x N x N third order
tensor that gives the coefficients of the quadratic
interactions, and ξ is the constant noise vector.

We wish to compute the matrices B and C so that
the least square error of (12),

 ()2T
tE s Bs Cs s= − −

r r r r
 is minimized (7)

The angle brackets denote a time average.

Minimizing E with respect to B and C gives the
system of equations:

1

43 0
−−=

=+

sssssCssB

CTT

t

 (8)

where:

ssssssssssssT

ssssssssssT tt

−=

−=
−

−

1
4

1
3

 (9)

Although this is a closed form solution, to

compute the third order tensor C requires inverting
the fourth order tensor 4T (Haupt and Weiss 1998).
Such an inversion is not trivial. Therefore, we
choose to instead compute C in equation (8) by
doing a best fit with a genetic algorithm.

Genetic Algorithms

The flow chart in Figure 1 provides a “big
picture'' overview of a continuous genetic
algorithm, that is, one in which the parameters are
real numbers. The parameters are the genes which
are strung together in a one-dimensional array
known as a chromosome. The GA begins with a
population of chromosomes which are fed to the
cost function for evaluation. The fittest
chromosomes survive while the highest cost ones
die off. This process mimics natural selection in the
natural world. The lowest cost survivors mate.
The mating process combines information from the
two parents to produce two offspring. Some of the
population experiences mutations.

Figure 1. Flowchart of continuous parameter
genetic algorithm.

As seen in the figure, the first step of a

continuous parameter genetic algorithm is creating
the population of chromosomes. First, the real
parameters are concatenated together into a
chromosome as:

[]
parNppppchromosome LL α21= (10)

where the ip are the parameters and there are a

total of parN parameters. The parameters are

simply floating point numbers. The encoding
function needs only keep track of which digits
represent which parameters and to make sure they
are within given bounds. A population of such
chromosomes is created using a random number
generator so that the chromosome arrays are
gathered together in a two dimensional matrix.
Once the chromosomes have been created, their
cost or fitness must be evaluated. This is done by
the cost or objective function, which is very
problem specific. The lowest cost chromosomes
(keepN) remain in the population while the higher

cost ones are deemed less fit and die off. The
reduced population is then the portion of the
population available for mating.

 There are a variety of methods to pair the
chromosomes for mating. Some popular methods

are reviewed by Haupt and Haupt (1998). Here,
we choose to pair the chromosomes according to
numerical rank. After the cost function evaluation,
the chromosomes are sorted in order from lowest
cost to highest. That is, the nth chromosome will
have a probability of mating of:

∑
=

+−
=

keepN

k

keep
n

k

nN
P

1

1
 (11)

Then the cumulative probabilities are used for
selecting which chromosomes mate.

 Once two parents are chosen, some method
must be devised to produce offspring which are
some combination of these parents. Many different
approaches have been tried for crossing over in
continuous parameter genetic algorithms (Adwuya
1996, Haupt and Haupt 1998).

 The method used here is a combination of
an extrapolation method with a crossover method.
We wanted to find a way to closely mimic the
advantages of the binary genetic algorithm mating
scheme. It begins by randomly selecting a
parameter in the first pair of parents to be the
crossover point.

{ }parNrandomroundup ×=α (12)

We'll let
 []

[]
par

par

dNddd

mNmmm

ppppparent

ppppparent

LL
LL

α

α

212

211

=

=
 (13)

where the m and d subscripts discriminate between
the mom and the dad parent. Then the selected
parameters are combined to form new parameters
that will appear in the children:

[]
[]ααα

ααα

β
β

dmdnew

dmmnew

pppp
pppp

−−=
−−=

2

1 (14)

where β is also a random value between 0 and

1. The final step is to complete the crossover with
the rest of the chromosome as before:

 []
[]

par

par

mNnewdd

dNnewmm

ppppoffspring

ppppoffspring

LL
LL

2212

1211

=

=
 (15)

If the first parameter of the chromosomes is

selected, then only the parameters to right of the
selected parameter are swapped. If the las t

Random Initial Population

Natural Selection

Mating

Mutation

Convergence Check

of Continuous Parameters

done

parameter of the chromosomes is selected, then
only the parameters to the left of the selected
parameter are swapped. This method does not
allow offspring parameters outside the bounds set
by the parent unless β is greater than one. In this
way, information from the two parent
chromosomes is combined a way that mimics the
crossover process during meiosis.

 If care is not taken, the genetic algorithm
converges too quickly into one region of the cost
surface. If this area is in the region of the global
minimum, that is good. However, some functions
have many local minima and the algorithm could
get stuck in a local well. If we do nothing to solve
this tendency to converge quickly, we could end up
in a local rather than a global min imum. To avoid
this problem of overly fast convergence, we force
the routine to explore other areas of the cost
surface by randomly introducing changes, or
mutations, in some of the parameters. A mutated
parameter is replaced by a new random parameter.

3. EXAMPLE 1 –
 PREDATOR/PREY MODEL

We begin with time series data from the

predator-prey model (also known as the Lotka-
Volterra equations), namely:

dxycy
dt
dy

bxyax
dt
dx

+−=

−=
 (16)

where x is the number of prey and y the number

of predators. The prey growth rate is a while the
predator death rate is c. Parameters b and d
characterize the interactions. Equations (16) were
integrated using a fourth order Runge Kutta with a
time step of 0.01 and parameters a =1.2, b=0.6, c=
0.8, and d=0.3. The time series showing the
interaction between the two appears as Figure 2.
This time series serves as the data for computing
the inverse models below. The phase space plot of
these data appears as Figure 3 where we see the
limit cycle between the predators and the prey.

The least squares fit to the linear model appears
in Figure 4. We note that the agreement is quite
poor, as one would expect given that the system
(16) is highly nonlinear. With no nonlinear
interaction available, the number of prey grows
while the number of predators remains stationary.

Figure 2. Time series of predator/prey

variation with time (eq. 16).

Figure 3. State space plot of predator/prey
variation with time (eq. 16).

Figure 4. Least Squares linear fit to (16).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

nu
m

be
r

of
 in

di
vi

du
al

s

Least Square fit to Lotka-Volterra Data

prey
predators

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.5

1

1.5

2

2.5

3

3.5

4

prey

pr
ed

at
or

s

state space

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

nu
m

be
r

of
 in

di
vi

du
al

s

prey
predators

To obtain a more appropriate nonlinear fit, we
now choose to model the data with the nonlinear
model of eq. (6). The nonlinear fit was done
according to the discussion of section 2 and used a
GA to fit the parameters. The GA used an initial
population size of 200, a working population size
of 100, and a mutation rate of 0.2. A time series of
the solution as computed by the GA appears in
Figure 5. Note that although the time series does
not exactly reproduce the data, the oscillations with
a phase shift of roughly a quarter period is
reproduced. The wavelength is not exact and the
amplitudes grow in time, indicating an instability.
This instability is likely inherent in the way that the
model is matched. However, the reproduction of
such a difficult nonlinear system is amazing given
the comparison to traditional linear models.

The state space plot of a time integration of the
nonlinear empirical model appears in Figure 6.
Once again, the limit cycle is not actually
reproduced. The nonlinear model instead appears
unstable and slowly grows. However, the
comparison with the linear least squares model
resulted in merely a single slowly growing curve
(not shown). The nonlinear empirical model was
able to capture the cyclical nature of the
oscillations much better than that.

Finally, Figure 7 shows the convergence of the
GA for a typical run of fitting the nonlinear model
(6) to the data. Note that due to their random
nature, the results of the GA are never exactly the
same. In particular the convergence plots will
differ each time. However, it is amazing how the
results are so reliable.

Figure 5. Time series of predator-prey

interactions as computed by the nonlinear
empirical model.

Figure 6. The predator-prey relation in state

space as computed by the nonlinear model with
parameters fit by the GA.

Figure 7. Evolution of the minimum cost.

5. EXAMPLE 2 – LORENZ EQUATIONS

 A second example of a nonlinear empirical

model examines whether it is possible to capture
the chaotic behavior of the Lorenz system (Lorenz
1963) which can be written:

xybzz
xzyxy

yxx

+−=
−−=

+−=

&
&
&

ρ
σσ

 (17)

where x, y, z are the lowest order coefficients of
a truncated series of atmospheric flow and we use

parameters: 28,3
8,10 === ρσ b These

0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

3

4

5

nu
m

be
r

of
 in

di
vi

du
al

s

Genetic Algorithm Nonlinear fit to Lotka-Volterra Data

prey
predators

0 5 10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

time evolution of minimum cost

iteration

m
in

im
um

 c
os

t

-4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

prey

pr
ed

at
or

state space-GA fit to data

parameters produce a chaotic regime that results in
a strange attractor. The equations (17) were
integrated using a fourth order Runge-Kutta
method to produce the data in Figure 8.

Figure 8. A Lorenz attractor computed by

integrating equations (17) in time for 2000 steps.

We wish to create an empirical model of these

data using the techniques presented above. The
parameters of the GA are an initial population of
500, working population of 100, mutation rate of
0.3 for a total of 200 generations. Taking into
account symmetries for this problem results in 18
unique parameters to find. For this highly
nonlinear regime, we were able to find a solution,
which when propagated via equation (6) produces
the time evolution depicted in Figure 9. Although
the match is not perfect, we have replicated the
general shape of the strange attractor and the size
of the domain is approximately correct.

Figure 9. Nonlinear model of Lorenz

attractor (equation 12) as computed with a GA.

 For comparison, the solution is compared to
a linear model fit, which is merely the linear part of
(12). For this portion, there is a simple closed form
solution that is easily computed. The linear match
is shown in Figure 10. We see that the linear
model is not able to capture the shape of the
attractor, but instead shows a decaying spiral
behavior.

Figure 10. Linear model of the Lorenz

equations.

6. CONCLUSIONS

 We have shown that nonlinear empirical models
show promise for capturing the essential dynamics
of nonlinear systems. Although these models can
be posed in terms of closed form solutions, they are
not easily solved given the necessity of inverting a
fourth order tensor. Here, we have used a genetic
algorithm to complete this inversion.
 The example problems demonstrate that for
nonlinear systems that cannot be modeled
adequately by the linear form of the empirical
model, the essence of both limit cycles and chaotic
attractors can be captured through application of a
nonlinear empirical model when coupled with the
artificial intelligence methodology of genetic
algorithms. The nonlinear model (6) when
combined with a GA reproduced the shape of the
attractor to the Lorenz equations reasonably well
compared to the essential decary of the linearized
method. For a chaotic system, we do not expect to
reproduce the exact time behavior and are rather
pleased to see the form of the attractor near to that
of the actual data used to create the model.

 Empirical models are not perfect. However,
they show great ability at not only reproducing the
behavior of complex models , but also serve to
predict future behavior better than more simplified

models and reproduce a response to forcing better
than linearizxed forward dynamical models . Such
models are only beginning to be explored.

ACKNOWLEDGMENTS

Elements of this work were inspired through

discussions with colleagues and students, including
Grant Branstator, Jeffrey Weiss, and Christina
Perez.

REFERENCES

Achatz, U., and G. Branstator, 1999: A Two-

Layer Model with Empirical Linear Corrections
and Reduced Order for Studies of Internal Climate
Variability. J. Atm. Sci, 56, , pp. 3140–3160.

Adewuya, A.A., 1996. New Methods in Genetic

Search with Real-Valued Chromosomes, Master’s
Thesis, Cambridge, Massachusetts Institute of
Technology.

Branstator, G. and S.E. Haupt, 1998: An
empirical model of forced barotropic atmospheric
anomalies, J. Climate, 11, 2645-2667.

Hasselman, K., 1988: PIPs and POPs: The

reduction of complex dynamical systems using
principal interaction and oscillation patterns. J.
Geophys. Res., 93, 11015-11021.

Haupt, R.L. and S.E. Haupt, 1998: Practical

Genetic Algorithms, New Yo rk: John Wiley &
Sons, 177 pp.

 Haupt, S.E. and J. Weiss, 1998: A Quadratic
Inverse Model of the Lorenz Equations, Abstract
Volume of the 1998 Fall Meeting of the American
Geophysical Union Abstract Volume, San
Francisco, CA.

 Lorenz, E.N., 1963: Deterministic Nonperiodic
Flow, J. Atmos. Sciences, 20, 130-141.

Penland, C., 1989: Random forcing and
forecasting using principal oscillation pattern
analysis. Mon. Weather Rev., 117, 2165-2185.

