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1. INTRODUCTION 

 
  
Empirical models have gained popularity in 

recent years as an alternative to the more 
traditional dynamical models (for example see 
Hasselman 1988, Penland 1989, Branstator and 
Haupt 1998).  Linear empirical models are easy to 
produce from data using standard least squares 
inversion techniques. Numerical modeling of time 
dependent flows has traditionally involved using 
some type of time stepping combined with known 
dynamics discretized from a partial differential 
equation.  However, sometimes the details of the 
dynamics are not sufficiently known or we wish to 
develop a model that reproduces dynamic behavior 
without involving the details of the full equations 
of motion.  In such cases, we can substitute an 
empirical model based on observed data.  These 
stochastic empirical models are built from 
measured or simulated data and are based on a 
Markhov model.  Given a sufficient amount of data 
to develop the model, the discretized dynamics of 
the traditional model can be replaced by a matrix of 
computed values that serve as a propagator matrix.   

However, for highly nonlinear fluid dynamics 
problems, linear models are no longer adequate. In 
these cases, a nonlinear term is often necessary to 
capture the dynamics. Since in fluid dynamics 
nonlinearity often enters as the quadratic advective 
term, the nonlinearity of the empirical model is 
also likely to be of quadratic form. Achatz and 
Branstator (1999) added nonlinear terms based on 
the dynamics of the problem to form a hybrid 
between the dynamics (nonlinear terms) and an 
empirical model (linear terms). Here, we seek to 
add the nonlinear terms empirically. Unfortunately, 
nonlinear models are more difficult to devise due 
to the introduction of higher order tensors to the 
problems.  We resolve this issue through redefining 
the problem in terms of optimization and directly 
searching for the propagator matrix given the data 
using an artificial intelligence technique such as a 
genetic algorithm (GA). 
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2. MODEL FORMULATION 

 
Linear Empirical Models 
 

First, we introduce the linear, time-varying 
model, which can be written in the form: 
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where: sv  is the N-dimensional state and can 
represent states such as velocities at various 
locations or the spectral coefficients of the velocity 

    
dt
sdv

 is the time rate of change of the state 

    B  is a linear NN × matrix that relates the 
above two 

    ξ
v

 is a vector of white noise (denoting the 
error in the fit) 

 
The dynamics are contained in the matrix, B.  

Nonlinearities are parameterized by corrections to 
B as well as within the noise portion of ?. This 
simple linear form is easily fit using standard 
analytical techniques to minimize the least square 
error between the model and time series data. 
These techniques involve minimizing the square of 
the error between the model and the time averaged 
data tendencies. Specifically, we wish to minimize 
the noise vector (equivalently, the error). We 
assume that sv behaves as a Markov process. We 
can minimize the error in a least square sense by 
requiring that: 
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The parentheses represent a spatial averaging 

while the angle brackets represent an ensemble 
time average. The solution to this problem involves 
finding where the derivative vanishes.  In doing 
this, one computes the covariance and lagged 
covariance matrices as: 



)()( tsts T=Λ  is the covariance matrix, 

averaged over time.  The superscript (T) 
indicates a matrix transpose.  

)()( tsts Tττ +=Λ  is the lagged 

covariance matrix.  
τ  is the chosen lag time. 
    
Upon solving the least squares problem, we 

find: 
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or in terms of an propagator equation, we can 
write 

 
 )()()( tsGts ττ =+                        (4) 
where: 
   )exp()( ττ BG =                  (5) 
 
Note that the model depends on the value of the 

lag, τ , the amount of data used to build it,  and the 
resolution of the data.  

Such linear empirical models often compete 
well with linearized dynamical models in  
reproducing the statistics of the modeled field.  In 
addition, much can be learned about the flow 
dynamics. 

 
Nonlinear Empirical Models  

When the dynamics are highly nonlinear, 
stochastic empirical models can also be formulated  
using nonlinear dynamics.  For instance, a 
quadratic empirical model could have the form:  
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The nonlinear interactions now occur explicitly 

through the nonlinear third order tensor operator, 
C.  Thus B is an N x N matrix that serves as the 
linear propagator, C is an N x N x N third order 
tensor that gives the coefficients of the quadratic 
interactions, and ξ  is the constant noise vector.  

We wish to compute the matrices B and C so that 
the least square error of (12), 
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The angle brackets denote a time average.  

Minimizing E with respect to B and C gives the 
system of equations: 
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where: 
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Although this is a closed form solution, to 

compute the third order tensor C requires inverting 
the fourth order tensor 4T  (Haupt and Weiss 1998).  
Such an inversion is not trivial.  Therefore, we 
choose to instead compute C in equation (8) by 
doing a best fit with a genetic algorithm. 

 
Genetic Algorithms  

The flow chart in Figure 1 provides a “big 
picture'' overview of a continuous genetic 
algorithm, that is, one in which the parameters are 
real numbers.  The parameters are the genes which 
are strung together in a one-dimensional array 
known as a chromosome.  The GA begins with a 
population of chromosomes which are fed to the 
cost function for evaluation.  The fittest 
chromosomes survive while the highest cost ones 
die off. This process mimics natural selection in the 
natural world.  The lowest cost survivors mate.  
The mating process combines information from the 
two parents to produce two offspring. Some of the 
population experiences mutations.  

 
 
 



Figure 1. Flowchart of continuous parameter 
genetic algorithm. 

 
 
As seen in the figure, the first step of a 

continuous parameter genetic algorithm is creating 
the population of chromosomes.  First, the real 
parameters are concatenated together into a 
chromosome as:  
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where the ip  are the parameters and there are a 

total of parN parameters. The parameters are 

simply floating point numbers.  The encoding 
function needs only keep track of which digits 
represent which parameters and to make sure they 
are within given bounds.  A population of such 
chromosomes is created using a random number 
generator so that the chromosome arrays are 
gathered together in a two dimensional matrix. 
Once the chromosomes have been created, their 
cost or fitness must be evaluated.  This is done by 
the cost or objective function, which is very 
problem specific.  The lowest cost chromosomes 
( keepN ) remain in the population while the higher 

cost ones are deemed less fit and die off.  The 
reduced population is then the portion of the 
population available for mating. 

     There are a variety of methods to pair the 
chromosomes for mating.  Some popular methods 

are reviewed by Haupt and Haupt (1998).  Here, 
we choose to pair the chromosomes according to 
numerical rank.  After the cost function evaluation, 
the chromosomes are sorted in order from lowest 
cost to highest.  That is, the nth chromosome will 
have a probability of mating of: 
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Then the cumulative probabilities are used for 
selecting which chromosomes mate. 

       Once two parents are chosen, some method 
must be devised to produce offspring which are 
some combination of these parents. Many different 
approaches have been tried for crossing over in 
continuous parameter genetic algorithms (Adwuya 
1996, Haupt and Haupt 1998). 

 The method used here is a combination of 
an extrapolation method with a crossover method. 
We wanted to find a way to closely mimic the 
advantages of the binary genetic algorithm mating 
scheme. It begins by randomly selecting a 
parameter in the first pair of parents to be the 
crossover point.  

 
{ }parNrandomroundup ×=α           (12) 

 
We'll let  
 [ ]

[ ]
par

par

dNddd

mNmmm

ppppparent

ppppparent

LL
LL

α

α

212

211

=

=
       (13) 

 
where the m and d subscripts discriminate between 
the mom and the dad parent. Then the selected 
parameters are combined to form new parameters 
that will appear in the children: 
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where β  is also a random value between 0 and 

1. The final step is to complete the crossover with 
the rest of the chromosome as before: 
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If the first parameter of the chromosomes is 

selected, then only the parameters to right of the 
selected parameter are swapped. If the las t 
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parameter of the chromosomes is selected, then 
only the parameters to the left of the selected 
parameter are swapped. This method does not 
allow offspring parameters outside the bounds set 
by the parent unless β  is greater than one.  In this 
way, information from the two parent 
chromosomes is combined a way that mimics the 
crossover process during meiosis. 

     If care is not taken, the genetic algorithm 
converges too quickly into one region of the cost 
surface. If this area is in the region of the global 
minimum, that is good. However, some functions 
have many local minima and the algorithm could 
get stuck in a local well. If we do nothing to solve 
this tendency to converge quickly, we could end up 
in a local rather than a global min imum. To avoid 
this problem of overly fast convergence, we force 
the routine to explore other areas of the cost 
surface by randomly introducing changes, or 
mutations, in some of the parameters. A mutated 
parameter is replaced by a new random parameter. 

 
3. EXAMPLE 1 –  
 PREDATOR/PREY MODEL 

 
We begin with time series data from the 

predator-prey model (also known as the Lotka-
Volterra equations), namely: 
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where x is the number of prey and y the number 

of predators. The prey growth rate is a  while the 
predator death rate is c. Parameters b and d 
characterize the interactions. Equations (16) were 
integrated using a fourth order Runge Kutta with a 
time step of 0.01 and parameters a =1.2, b=0.6, c= 
0.8, and d=0.3. The time series showing the 
interaction between the two appears as Figure 2. 
This time series serves as the data for computing 
the inverse models below. The phase space plot of 
these data appears as Figure 3 where we see the 
limit cycle between the predators and the prey. 

The least squares fit to the linear model appears 
in Figure 4.  We note that the agreement is quite 
poor, as one would expect given that the system 
(16) is highly nonlinear.  With no nonlinear 
interaction available, the number of prey grows 
while the number of predators remains stationary. 

 
 

 
Figure 2. Time series of predator/prey 

variation with time (eq. 16). 
 
 

Figure 3. State space plot of predator/prey 
variation with time (eq. 16). 

 
 

 
Figure 4. Least Squares linear fit to (16). 
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To obtain a more appropriate nonlinear fit, we 
now choose to model the data with the nonlinear 
model of eq. (6). The nonlinear fit was done 
according to the discussion of section 2 and used a 
GA to fit the parameters. The GA used an initial 
population size of 200, a working population size 
of 100, and a mutation rate of 0.2.  A time series of 
the solution as computed by the GA appears in 
Figure 5.  Note that although the time series does 
not exactly reproduce the data, the oscillations with 
a phase shift of roughly a quarter period is 
reproduced.  The wavelength is not exact and the 
amplitudes grow in time, indicating an instability.  
This instability is likely inherent in the way that the 
model is matched.  However, the reproduction of 
such a difficult nonlinear system is amazing given 
the comparison to traditional linear models. 

The state space plot of a time integration of the 
nonlinear empirical model appears in Figure 6.  
Once again, the limit cycle is not actually 
reproduced.  The nonlinear model instead appears 
unstable and slowly grows.  However, the 
comparison with the linear least squares model 
resulted in merely a single slowly growing curve 
(not shown).  The nonlinear empirical model was 
able to capture the cyclical nature of the 
oscillations much better than that. 

Finally, Figure 7 shows the convergence of the 
GA for a typical run of fitting the nonlinear model 
(6) to the data.  Note that due to their random 
nature, the results of the GA are never exactly the 
same.  In particular the convergence plots will 
differ each time.  However, it is amazing how the 
results are so reliable. 

 
 

 
Figure 5. Time series of predator-prey 

interactions as computed by the nonlinear 
empirical model. 

 

 
Figure 6.  The predator-prey relation in state 

space as computed by the nonlinear model with 
parameters fit by the GA. 

 

 
Figure 7.  Evolution of the minimum cost. 
 
 
 

5.  EXAMPLE 2 – LORENZ EQUATIONS 
 
     A second example of a nonlinear empirical 

model examines whether it is possible to capture 
the chaotic behavior of the Lorenz system (Lorenz 
1963) which can be written: 
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where x, y, z are the lowest order coefficients of 
a truncated series of atmospheric flow and we use 

parameters: 28,3
8,10 === ρσ b  These 
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parameters produce a chaotic regime that results in 
a strange attractor.  The equations (17) were 
integrated using a fourth order Runge-Kutta 
method to produce the data in Figure 8. 

 

 
Figure 8.  A Lorenz attractor computed by 

integrating equations (17) in time for 2000 steps. 
 
 
We wish to create an empirical model of these 

data using the techniques presented above.      The 
parameters of the GA are an initial population of 
500, working population of 100, mutation rate of 
0.3 for a total of 200 generations.  Taking into 
account symmetries for this problem results in 18 
unique parameters to find.  For this highly 
nonlinear regime, we were able to find a solution, 
which when propagated via equation (6) produces 
the time evolution depicted in Figure 9.  Although 
the match is not perfect, we have replicated the 
general shape of the strange attractor and the size 
of the domain is approximately correct. 

  
 

 
Figure 9.  Nonlinear model of Lorenz 

attractor (equation 12) as computed with a GA. 
 
 

     For comparison, the solution is compared to 
a linear model fit, which is merely the linear part of 
(12).  For this portion, there is a simple closed form 
solution that is easily computed.  The linear match 
is shown in Figure 10.  We see that the linear 
model is not able to capture the shape of the 
attractor, but instead shows a decaying spiral 
behavior. 

 

 
Figure 10.  Linear model of the Lorenz 

equations. 
 
 

 
6. CONCLUSIONS 

 
     We have shown that nonlinear empirical models 
show promise for capturing the essential dynamics 
of nonlinear systems. Although these models can 
be posed in terms of closed form solutions, they are 
not easily solved given the necessity of inverting a 
fourth order tensor. Here, we have used a genetic 
algorithm to complete this inversion.              
      The example problems demonstrate that for 
nonlinear systems that cannot be modeled 
adequately by the linear form of the empirical 
model, the essence of both limit cycles and chaotic 
attractors can be captured through application of a 
nonlinear empirical model when coupled with the 
artificial intelligence methodology of genetic 
algorithms. The nonlinear model (6) when 
combined with a GA reproduced the shape of the 
attractor to the Lorenz equations reasonably well 
compared to the essential decary of the linearized 
method. For a chaotic system, we do not expect to 
reproduce the exact time behavior and are rather 
pleased to see the form of the attractor near to that 
of the actual data used to create the model. 

 Empirical models are not perfect. However, 
they show great ability at not only reproducing the 
behavior of complex models , but also serve to 
predict future behavior better than more simplified 



models and reproduce a response to forcing better 
than linearizxed forward dynamical models . Such 
models are only beginning to be explored.  
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