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1. INTRODUCTION dominantly in the meteorological community and
   The availability of gridded forecasts from National
Weather Service (NWS) Weather Forecast Offices
(WFOs) allows for quantitative evaluation of fore-
cast performance. Gridded objective analyses of
meteorological variables can be used to verify such
forecast products. The NWS Western Region cur-
rently is provided with hourly gridded analyses
from the University of Utah referred to as Utah
ADAS, a modified version of the ARPS Data Analy-
sis System; Lazarus et al. (2002). ADAS uses an
analysis technique which converges to optimal
interpolation. Utah ADAS analysis grids can be
used to evaluated forecast grids from the WFOs
such as those provided as part of the NDFD sys-
tem (at 5km resolution). 
   Use of a gridded analyses for forecast validation
assumes some level of certainty in the analysis
product. However, evaluation of the analysis error
is rarely provided and is generally not incorporated
into skill scores used to evaluate forecasts. Kriging,
an optimum interpolation technique with a theoreti-
cal basis similar to the approach used in ADAS,
can provide an estimate of the analysis error. This
error estimate is used as a proxy for an estimate of
the error in Utah ADAS and is then used in a modi-
fied skill score which accounts for analysis error. 

2. KRIGING: THE SEMIVARIOGRAM

   Kriging is an optimum interpolation approach
originally developed by D.G. Krige in the 1950s and
used frequently in geostatistics. Kriging can be for-
mally related to Gandin’s optimum interpolation
scheme (Herzfeld, 1996) which is used more pre-

from which the Bratseth technique used in Utah
ADAS is based. Both variants of optimum interpo-
lation can be cast in the context of analyzing
departures from a background field. In this study
we will be using the 20km Rapid Update Cycle
(RUC) as the background field and will use
MesoWest (Horel, et al, 2002) surface observa-
tions to determine departures from the background
field. In kriging, spatial analysis of the departure
from the background field is used to tune the analy-
sis. The semivariance function, γ, is defined as: 

  γ(h) = 0.5 Var{Z(x+h)-Z(x)}

where h is the lag. In this case we assess the tem-
perature departure between the observations and
the background field as a function of horizontal lag.
RUC surface temperature was interpolated to
MesoWest station locations prior to calculating
temperature departures. These departures were
then used to generate a semivariogram, which is
simply a plot of the semivariance as a function of
the lag. Figure 1 is the semivariogram for tempera-
ture during AUG 2003 as a function of UTC hour. 

Fig. 1. Semivariance of temperature observations from
MesoWest minus interpolated RUC values at the station
locations as a function of UTC hour. 
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The semivariance in Fig. 1 appears to asymptote at
by about 200 km for all times, this distance is
defined as the range in geostatistics. The esti-
mated semivariance at lag equal to 0 km is referred
to as the nugget, while the value at the range is
referred to as the sill. The diurnal variation indi-
cates the best match between the RUC and
MesoWest observations occurs during the well
mixed portions of the day. Care should be taken in
interpreting the results as background error due to
the uncertainty of observations and due to error
introduced by interpolation to station locations, etc. 
   The value of the nugget is influenced by more
than standard observational error. In this applica-
tion it likely reflects effects ranging from the repre-
sentativeness of station locations to sensor
characteristics and siting. Localized land use and
vegetation impact the surface meteorological quan-
tities, though are not often incorporated into grid-
ded forecasts or analysis schemes, and are
assumed to be included in the nugget.
   An analytic function describing the semivariance
is required for the kriging analysis. The AUG 2003
data were fitted to a gaussian function. A gaussian
function was chosen versus the traditional expo-
nential function since ADAS uses a gaussian
weighting scheme. Figure 2 displays the best fit
values for the semivariogram parameters to a
gaussian model. Diurnal effects for the individual
parameters are noted with the range varying from
20 km to 60 km. It is apparent that a single semi-
variogram model could not be used for the kriging
technique. 

Fig. 2. A gaussian best fit to the semivariogram parame-
ters from AUG 2003 data including the range (green tri-
angle, km), sill (blue diamonds, deg2), and nugget (pink
squares, deg2).

3) KRIGING: ERROR VARIANCE

   Once an acceptable semivariogram has been
chosen (a non-trivial step), the kriging analysis can
be conducted using the departures at the observa-
tion locations. The reader is referred elsewhere for
a thorough discussion of kriging (e.g. Issaks and
Srivastava, 1989). Kriging relies on the semivari-
ance function to optimize weights that are used to
determine analysis values at grid points. The equa-
tion for kriging error variance for a grid point loca-
tion is as follows:

where N is the number of observation locations
with temperature anomaly values, and the lag h is
the horizontal distance between an observation
point (n) and the analysis grid point (p). λ is a
lagrange multiplier required due to the constraint
that the estimator be unbiased. A modified version
of a commercial software kriging analysis program
was used to compute the kriging error variance at
grid points. MesoWest station locations with the
exact same horizontal location were removed from
the analysis as this causes ill conditioning of the
solution matrices for the kriging system. This con-
straint only caused a few data points to be
excluded from the kriging error calculation. 
   An estimate of the Utah ADAS analysis tempera-
ture error for the MSO WFO region for 10 OCT
2003 1200 UTC is depicted in Figure 3. The esti-
mated error variance in temperature anomaly
ranges from the semivariogram nugget (4 deg2)
and the sill (12 deg2) which were used for the
model semivariogram for this realization.The krig-
ing error is a function of station geometry, espe-
cially station density and the choice of
semivariogram. The kriging error program can be
run in a mode to use a sample variance rather than
that specified by the semivariogram. In addition, a
semivariogram could be calculated using only the
data used in the kriging analysis, but there is a
trade-off in terms of quality of the semivariogram
when using fewer observation points to estimate
this function. The appropriateness of the semivari-
ogram will impact the reliability of the error esti-
mates. The best approach might require diurnally
varying semivariograms as a function of time of
year, perhaps with monthly resolution. All tempera-
ture data were treated the same, though uncer-
tainty likely varies some between networks. 
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Fig. 3. Kriging error variance estimate for 10 OCT 2003
1200 UTC. 

4) NORMALIZING THE SKILL SCORE 

   The analysis error estimate obtained via the krig-
ing optimum interpolation method can be used to
modify skill scores for the evaluation of forecast
performance. The rational being that the penalty
ought to be reflective of the observational uncer-
tainty. Figure 4 depicts the difference between the
NDFD (Glahn and Ruth, 2003) 12 hour forecast
grid valid 10 OCT 2003 1200 UTC and the Utah
ADAS analysis also valid at that time (subsampled
to equal the 5 km resolution of the NDFD grid). The
impact of complex terrain is quite obvious in this
region with errors highly correlated along topo-
graphic features.

Fig. 4. Temperature difference between 12 hour forecast
of temperature (from NDFD 5km grid) and ADAS analy-
sis at 10 OCT 2003 1200 UTC. 

   Using the temperature difference between the
two grids as a simple skill score for the quality of
the temperature forecast, a modified skill score is
generated by multiplying the temperature differ-
ence by a factor that weights the error more heavily
if there is a lower observational error. The following
normalizing factor was chosen to equal 2 when the
observational for a grid point was equal to the nug-
get value (or the minimum possible analysis error)
and equal to 1 when the equal to the sill (or the
maximum possible analysis error).

Other approaches to modifying the skill score cer-
tainly could be used, this is just one possible
approach used for the purpose of discussion. 
   Figure 5 depicts a modified skill score using this
normalizing factor. Visual inspection may not
reveal significant impact, though the complex ter-
rain effects in this region add significant noise to
the graphic. Ultimately, it is the culmination of
longer time series of these type of statistics that
are expected to provide insightful views on forecast
validation rather than case by case examples.
Interesting cases, though, can reveal limitations of
the analysis schemes in extreme situations (e.g.
strong frontal zones, etc.). The underlying statisti-
cal assumptions of the optimum interpolation
approach used in this example may be violated in
such situations, and this would include the applica-
tion of the kriging error variance as a method to
estimate the uncertainty in the gridded analysis. 

Fig. 5. A modified evaluation of forecast error based on
the kriging error variance. 
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5) DISCUSSION

   A method to incorporate observational error esti-
mates in gridded forecast verification has been
developed making use of the kriging error variance
which is used as a proxy for estimating the error in
the Utah ADAS gridded surface analyses. Only
results for temperature were shown, but the
approach is applicable to other surface meteoro-
logical variables. The semivariogram analysis pro-
vides insightful information that may be helpful in
it’s own right for tuning analysis parameters in
ADAS (i.e., the weighting function). Since the sur-
face analysis from the Utah ADAS incorporates 3
dimensional weighting and other factors such as
proximity to water and an anisotropy factor, the
Kriging error would only be a rough estimate of the
actual analysis error. Cross validation methods
could be used to estimate error, but are computa-
tionally expensive compared to the kriging
approach and are also not perfect estimators of
analysis uncertainty. Some level of cross validation
would probably be beneficial to compare with Krig-
ing estimates. 
   The kriging method used essentially accounts for
data density and it is understood that the applica-
tion of the kriging error variance has limitations that
may make use of this approach problematic, but
perhaps no more so than the use of optimum inter-
polation as an analysis and verification tool. The
strong point of this approach is that grid point anal-
ysis values and observations are treated as quanti-
ties with a level of uncertainty, and this uncertainty
is visibly quantifiable in the semivariogram. Other
approaches to validation often use methods that fit
an analysis exactly to observation values; essen-
tially assuming no observational error and perfect
certainty of analysis at grid point. 
   Skill scores based on observational error will be
utilized over longer time records to evaluate if such
error can impact forecast evaluation. It is possible
that areas considered poorest in terms of forecast
skill could change as a result of accounting for
observational error. Testing of this approach in
complex terrain may be the most severe test, and it
is probable that the method may be more easily
adapted or evaluated in areas with less severe
topographical variations. 
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