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1. INTRODUCTION

The goal of adaptive observations is to decrease the

forecast error by placing observations in regions where

additional observations are expected to improve a fore-

cast of interest. These regions may be considered “sen-

sitive” in the sense that changes to the initial conditions

in these regions are expected to have a larger effect on a

particular measure of forecast skill than changes in other

regions.

Gradient sensitivity and singular vectors (SVs) are

the tools that have been proposed as adaptive obser-

vation strategies. Because both gradient sensitivities

and SVs are calculated using the adjoint of the tan-

gent linear propagator of the model, gradient sensitivi-

ties and SVs are called “adjoint-based sensitivities”. Most

of the studies that have used adjoint-based sensitivi-

ties to identify sensitive regions for adaptive observations

have assumed that the actual error which projects onto

the adjoint-based sensitivities contributes to a significant

fraction of the forecast error (Gelaro et al. 1999). Since

the structure and evolution of the actual analysis error

is not known in real situations, it is not clear how valid

this assumption is. In this study, the structure and evolu-

tion of both analysis error and adjoint-based sensitivities

are compared following a typical synoptic event under the

perfect model assumption.

The results show that the projection of the evolving

SV onto the forecast error increases during the SV’s evo-

lution, which suggests the possibility of using the evolved

SV for adaptive observations. In order to test the feasibil-

ity of the evolved SV strategy for adaptive observations,

the evolved SV strategy along with several other strate-

gies is implemented in observation system simulation ex-

periments (OSSEs). The average reduction in forecast
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error produced by each of the strategies is evaluated and

compared. The OSSEs are run using the National Cen-

ter for Atmospheric Research (NCAR) quasigeostrophic

(QG) model. The adjoint model developed by Kim (2002)

is used to calculate the adjoint-based sensitivities.

2. GENERATION OF EXPERIMENTAL STATES

A case is selected from a set of states generated

from nonlinear integrations of the QG model. We identify

this arbitrary state as the true state. During the spin-up

time, a model state is initially generated by modifying the

true state with random noise and subsequently assimi-

lating simulated rawinsonde observations every 12 hours

using the three-dimensional variational data assimilation

scheme developed by Morss (1999). Once the truth and

model states are generated at the beginning time of each

experiment, the states at subsequent times are gener-

ated by integrating both states forward for 48 hours using

the QG model. The analysis error (forecast error) is cal-

culated by the difference between true state and model

state at the beginning time (at subsequent times). De-

tails of the experimental overview is shown in Kim et al.

(2002).

3. COMPARISON OF ERROR AND ADJOINT-BASED

SENSITIVITIES

In order to quantify the degree of similarity between

the error and adjoint-based sensitivities, the projections

of each of these fields onto the others is calculated. The

evolutions of the projection of the analysis error onto the

adjoint-based sensitivities are shown in Fig. 1. That the

projection of the analysis error onto the adjoint-based

sensitivities at t = 0h is small, implies that only a small

fraction of the analysis error contributes to a significant

fraction of the forecast error at t = 48h. The evolution of

the normalized projection of the error onto the SV sug-

gests the “evolved SV” as an adaptive observation strat-

egy.
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FIG. 1. Time evolution of the normalized projection of

the analysis error onto (a) the gradient sensitivity and (b)

the SV for the entire domain. All the normalized projec-

tions are obtained by averaging over 25 cases.

4. IMPACT OF ADAPTIVE OBSERVATIONS

Figure 2a shows the RMS forecast errors associated

with 16 fixed (adaptive) observation locations at the indi-

cated times for the nonadaptive and four adaptive strate-

gies. The forecast errors of the various adaptive strate-

gies are less than that of the fixed observation strat-

egy. The forecast errors produced by the evolved SV

strategies are smaller than those produced by the adjoint-

based strategies. Figure 2b shows the RMS forecast er-

rors for 32 fixed (adaptive) observation locations. In con-

trast to the sparse observation case, the adaptive strate-

gies do not reduce error significantly more than the fixed

observation strategy. Even in this case, the evolved SV

strategies perform better than the adjoint-based strate-

gies.
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FIG. 2. RMS forecast errors produced by fixed obser-

vations and by adaptive strategies based on the error, the

gradient sensitivity, the initial SV, and the evolved SV, for

the following observing networks: (a) 16 fixed (adaptive)

observations and (b) 32 fixed (adaptive) observations.

The order of the legend corresponds to the order of bars

in each plot.

5. SUMMARY AND DISCUSSION

The impact of adaptive strategies varies with the ob-

servation density. For a small number of observations,

several of the adaptive strategies tested reduce forecast

error more than the nonadaptive strategy. For a large

number of observations, it is more difficult to reduce fore-

cast errors using adaptive observations. The evolved SV

strategies perform as well as or better than the adjoint-

based strategies for both observation densities.

Acknowledgments

This work represents a portion of the first author’s re-

search at the University of Wisconsin-Madison and the

first author gratefully appreciates Prof. Michael Morgan

and Dr. Rebecca Morss. This research was supported

by the NSF grant ATM-0121186 awarded to the Univer-

sity of Wisconsin-Madison and “A Study on the Global

Ocean/Climate Variability and Predictability with Array for

Real-time Geostrophic Oceanography (ARGO) Program”

in Meteorological Research Institute in Korea Meteorolog-

ical Administration.

REFERENCES

Gelaro, R., R. H. Langland, G. D. Rohaly, and T. E. Ros-

mond, 1999: An assessment of the singular-vector

approach to targeted observing using the FASTEX

dataset. Quart. J. Roy. Meteor. Soc., 125, 3299–

3327.

Kim, H. M., 2002: Diagnosis of error growth and

propagation: Implications for adaptive observations.,

PhD thesis, University of Wisconsin-Madison, 197

pp. [Available from Memorial Library, 728 State St.,

Madison, WI 53706].

Kim, H. M., M. Morgan, and R. E. Morss, 2002: Evolution

of analysis error and adjoint-based sensitivities: Im-

plications for adaptive observations. J. Atmos. Sci.

accepted.

Morss, R. E., 1999: Adaptive observations: Idealized

sampling strategies for improving numerical weather

prediction., PhD thesis, M.I.T., 225 pp.


