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In investigating EA rainfall variability 
and its relationship to other climatic 
elements it has become imperative to 
analyze the irregularly distributed events in 
time that depict non-stationary power at 
many different frequencies.  

1. INTRODUCTION 
 

Problems of quantifying rainfall 
variability in space with respect to climatic 
elements such as SST, winds, air 
temperature and specific humidity have 
been a subject of numerous studies for 
Eastern Africa, (EA) (e.g., Mutai et al. 1998; 
2002; Ntale et al.  2003), and other studies 
as summarized in Beltrando (1990). 
Following some of these studies, EA has 
been divided into between 6 and 20 zones 
of homogenous rainfall variability, found to 
teleconnect to SST variability in the Atlantic, 
Indian and Pacific oceans, (Mutai et al. 
1998; Ntale et al. 2003) and atmospheric 
signals, Philippon et al. (2002). Many of 
these studies applied a combination of time 
domain multivariate statistics such as 
harmonic analysis, Fourier analysis, linear 
regressions and cross correlations to climate 
data to determine relationships between and 
among the climate elements. A common and 
well-recognized shortcoming of such 
approaches has been the assumption that 
climate data is stationary and linear, a 
criterion few data sets from natural 
phenomena satisfy (Huang et al., 1998).  

To meet this requirement, this study 
used wavelet analysis and wavelet based 
empirical orthogonal function analysis 
(WEOF), also known as wavelet principal 
component analysis (WLPCA) and wavelet 
independent component analysis (WLICA) 
to study the variability, teleconnectivity and 
predictability of EA rainfall. In this study, two 
sets of information from the wavelet spectra 
are used. These are (1) energy coefficients 
(also known as power) of individual scales of 
the wavelet spectra, and (2) the average 
wavelet spectra energy over some 
significant scales (called scale averaged 
wavelet power, SAWP). Combinations of 
empirical orthogonal function analysis and 
wavelets analysis have previously been 
applied to multivariate statistical process 
monitoring (e.g., Bakshi 1998).  
 
2. DATA AND METHODS. 
 

With unstable relationships between 
rainfall in EA and SST in the oceans and 
atmospheric circulation fields highlighted by 
erratic rainfall between 1965 and 1997, one 
of the major challenges for meteorologists 
has been to predict the nature of this 
variability in the rainfall of EA over different 
spatial and temporal scales. Potts (1971), 
and Rodhe and Virji (1996) showed that 
oscillatory peaks of 2-2.5, 3.5 and 5.6 years 
in addition to other peaks associated with EL 
Nino (e.g., Ropelewski and Halpert 1987) 
exist in EA rainfall. However, it has never 
been clear as to when these oscillations 
occurred in the rainfall. 

EA has two rainy seasons, the 
September-November (SON) and March-
May (MAM). Monthly rainfall data (1950-
1995) from 21 grid locations at a resolution 
of 2.5°×3.75° latitude and longitude was 
extracted for EA (4ºS-12ºS, 28ºE-44ºE), see 
Fig 1.The rainfall data was provided by the 
UK meteorological office.  

The monthly rainfall data was 
transformed into seasonal data by summing 
the monthly values for each grid location. 
Monthly SST anomaly grid data (1950-1995) 
at 5o x 5o latitude and longitude resolution 
was extracted from the Indian (20ºN-40ºS, 
40ºE-105ºE) and Atlantic (10ºN-30ºS, 50ºW-
10ºE) Ocean. This data was transformed 
into seasonal and annual data by computing 
3-month averages for JFM, AMJ, JAS and 
SON and annual averages, respectively. 
The SST dataset is part of MOHSST6 and 
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was provided by the UK meteorological 
office.  

 
 
Fig. 1. (a) Study location (b) detailed 
location and description of EA (Uganda, 
Kenya and Tanzania) 
 
 
2.2 Wavelet Analysis 

 
Wavelets are a set of limited 

duration waves, also called daughter 
wavelets, because they are formed by 
dilations and translations of a single 
prototype wavelet function ψ(t), where t is 
real valued, called the basic or mother 
wavelet (Castleman, 1996). The mother 
wavelet designed to oscillate like a wave, is 
required to span an area that sums to zero, 
and die out rapidly to zero as t tends to 
infinity to satisfy the so called “admissibility” 
condition. 

 
      (1) ( ) 0=Ψ∫ dtt
 
A set of wavelets can be generated by 
translating and scaling the basic wavelet as 
follows   
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where the scale (width) of the wavelet and 
translated position along the t-axis are a and 
b respectively.  By continuously varying a 
long b, a picture is constructed depicting 
how the energy over various frequencies 
varies with time. The parameters a and b 
are real and a, always positive, may take 

continuous or a discrete values. The 
quantity  in Equation (2) is an energy 
normalization term, which ensures that 
energy of the mother, and daughter 
wavelets remain the same over all scales 
and making it possible to directly compare 
wavelet transforms of one time series with 
another (Torrence and Compo, 1998).   
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The wavelet transform of a real 

signal X (t) with respect to the mother 
wavelet is a convolution integral given as   
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where ψ* is the complex conjugate of ψ. In 
this equation, ( )ab,W  is a wavelet 
spectrum, a matrix of energy coefficients of 
the decomposed time series X (t). A faster 
and much more efficient way to compute the 
wavelet transform is done in the Fourier 
space using the Fourier transform of a 
discrete time series, X (t), as 
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where the caret symbolizes Fourier 
Transform, k is the frequency index (0,…T) 
and Ψ (sωk) is the Fourier transform of the 
wavelet function. The wavelet spectrum was 
computed using a discrete set of 20 scales 
starting at 2 years in fractional power of two 
using  
 

jj
oj ss δ2=     (5) 

 
where s0 is twice the sampling rate,j 
=0,1,….20, and δj = 0.25, thus giving 
scales(periods) ranging from 2 to 64 years. 
The wavelet transform of a time series 
contains a wealth of information, which can 
be condensed over a range of scales to 
construct the scale averaged wavelet power 
(SAWP) and used in multivariate analysis. 
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where Cδ is the reconstruction factor that 
takes on values depending on the mother 
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wavelet used, δj is a factor for scale 
averaging and δt is the sampling period. The 
global wavelet spectrum shows dominant 
oscillations present in a time series. The 
local wavelet power shows how the 
dominant oscillations vary with time. To 
examine whether two remotely located 
multivariate time series are related to each 
other or if one modulates the other over a 
number of scales, the individual scale power 
or the SAWP can be constructed by varying 
the scale, a, and computing the weighted 
sum of the wavelet power over those scales. 
Using the results of global spectra computed 
for some selected SST fields located in the 
Indian and Atlantic Oceans and rainfall fields 
located in EA, we extracted energy of some 
individual scale and SAWP from the 2-8 
year range. To compute the wavelet power 
for this study, the Morlet wavelet (k = 6), 
was used because its structure resembles 
that of a rainfall time series.  
 
 Ψ (t) = π-1/4ei6te-t2/2     (7) 
 
2.3 Wavelet Empirical Orthogonal 

Function Analysis (WEOF).  
 

Empirical Orthogonal Functions 
analysis (EOF) has been widely used (e.g. 
Kutzbach, 1967) for analyzing spatial and 
temporal variability of physical fields to 
objectively identify the spatially uncorrelated 
modes of variability of a given field. In this 
study EOF is used on individual scale power 
or SAWP. Since the WLPCs are obtained 
from SAWP, they are interpreted as 
‘frequency compacted’ energy variability. To 
identify and delineate temporally and 
spatially uncorrelated patterns at regional 
scale, we applied the WEOF analysis on 
SAWP of the SST of the South Atlantic and 
Indian Ocean and rainfall time series of EA.  

 
2.4 Wavelet Independent Component 

Analysis (WICA) 
 
Because EOF technique uses 

second order statistics information only, the 
PCs extracted are uncorrelated but 
sometimes not really independent. This 
difficulty can be resolved if Independent 
Component Analysis (ICA) also called blind 
source separation (BSS), (Hyvärinen and 
Oja, 2000) is used to extract the 
independent modes from the data. ICA 

makes the extracted components as 
independent as possible. To obtain the initial 
most important independent components, 
pre-whitening, a process of projecting the 
original data into a subspace spanned by 
the first few PCs is employed. Using these 
projections optimization algorithms are used 
to estimate the independent components. 
ICA is considered an extension to PCA and 
used in this study as a complementary tool 
to EOF analysis, to allow the underlying 
structure of the data to be more readily 
observed.   
 
2.5 Artificial Neural Network driven 

by Genetic Algorithm (ANN-GA) 
for rainfall prediction 

 
The Genetic algorithm calibrated 

neural network used in this study (Fig not 
shown) consists of a population of feed 
forward neural networks embedded in a 
Genetic algorithm routine. The ANN 
parameters are iteratively improved via 
genetic evolution (selection, crossover and 
mutation) to more accurately model the joint 
SST-rainfall variability. The objective 
function used is a combination of the 
Pearson correlation and the root mean 
square error (RMSE). For each neural 
network of the population, the predictand, y, 
is obtained as a nonlinear translation of the 
weighted average of the PCs of raw data, x  
 

( )( ) 211
1

2
2 bbxwfwfy ++= ∑ ∑      (8) 

 
where x is the standardized anomaly and w1 
and w2 are weights for each solution to the 
hidden and the output layers respectively, 
and b1 and b2 are the bias vectors 
associated with the hidden and output 
layers. The transfer function, f1, maps the 
PCs to the hidden layer, containing two or 
more neurons, whose number is dictated by 
the complexity of the problem.  The biases, 
b1 and b2 are added to stabilize the 
solutions. Next the hidden layer is mapped 
to the third (output) layer containing a single 
neuron, through another transfer function f2. 
The non-linear mapping function, f1, used 
here is the hyperbolic tangent function, also 
called the squashing function (Haykin, 
1994), used to squash or limit the output of a 
neuron to permissible amplitude.  
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2.6.1 Canonical Correlation Analysis  
(CCA) and Principal Component 
Analysis (PCA). 

 
CCA is an established statistical 

forecasting scheme. Readers interested in 
details of CCA can refer to Barnett and 
Preisendorfer 1987 and Glahn (1968). The 
size of raw input data from the Indian and 
South Atlantic Ocean that was identified 
through WEOF was reduced to a few 
dominant EOF or PCA modes as input to 
CCA.  In applying CCA model, 37 years of 
data was used to calibrate at each iteration. 
For example 1950-1986 AMJ data was used 
to predict the 1986/87 ONDJFM rainfall, 
1951-1987 for predicting the 1987/88 
rainfall, etc. 
 
3. RESULTS 
 
3.1 Variability of the rainfall in EA 

and SST in the Indian and South 
Atlantic Ocean. 

 
Applying the WEOF and the WICA 

analyses techniques to individual scale 
power and SAWP for the SON season, one 
major WLPC, which explained a variance of 
over 60%, was retained (see Fig 1). This 
WLPC also explained the largest variance 
within the 2-2.4-year cycle. The spatial 
distribution of WLPC1 is shown as a strong 
SON signal over much of EA with R2 of 
about 0.8 between WLPC1 and the 
individual 2.5ºx3.75º latitude, longitude grid 
station SAWP. 

The MAM season found to have a 
weak internal signal (WLPC1 of SAWP, 26% 
using WEOF) was best diagnosed using 
WICA, where WLPC1 accounted for over 
30% for both SAWP and most of the scales 
in the 4-8 year range. The MAM season was 
found to be out of phase between the east 
Tanzania and southern Uganda with the rest 
of the EA (see WLPC1 of MAM in Fig 1).  

The temporal evolution of the SON 
and MAM variabilities shown in Fig 2 are 
reminiscent of warming and cooling of the 
Indian and Atlantic oceans (Figs not shown). 
The decrease and increase of energy in the 
figures are also consistent with below and 
above normal rainfall, respectively, in the 
last 20 years.  

The SON season was found to be 
strongly linked to the south Indian Ocean but 

was also found to immediately respond to 
SST variabilities in both the north and 
southern portions of the ocean. The MAM 
was found to be strongly teleconnected to 
variabilities in the Atlantic Ocean.  
 
 (1) SON season 

 
 

 
 

Fig 1.   The WLPC1 of SON and MAM  
respectively. 
 

 

 
 
Fig 2. The temporal variabilities of the  

WLPCs of the SON and MAM      
WLPCs.  
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Fig. 3 The teleconnection between SON and    

Indian oceans and the MAM and 
South Atlantic Ocean. 

 
3.2 Predicted EA Rainfall 
 

The strong annual and seasonal 
relationships found above between the SST 
SAWP of the south Atlantic and Indian 
Oceans and the EA rainfall WLPCs shows 
that the predictability of rainfall in EA based 
on the SST of the two oceans is possible. 
Two predictor data sets were formed. The 
first data set (Data1) was extracted from the 
SW and the NW Indian Ocean and the 
second data set (Data2) was extracted from 
the Brazil and Guinea ocean currents in the 
South Atlantic Ocean. SST data from these 
fields was extracted for the months of April, 
May and June. The data was averaged over 
the three months for each grid station in the 
two oceans to give one AMJ data set. To 
evaluate the prediction skill, the Pearson 
correlation and RMSE are used.  

The predicted SON standardized 
rainfall and the corresponding skills (shown 
for ANN-GA only) clearly indicate that the 
SON rainfall variability responds better to 
the Indian than the Atlantic Ocean SST 
variability and the MAM rainfall variability 
responds to the Atlantic Ocean SST 
variability better than the Indian Ocean SST 
variability. The skill also underscores the 
spatial distribution of the strength of the 
signals as found by WOEF and WICA, 

showing that only a single homogenous 
rainfall zone exist during SON and two 
zones exist during the MAM season.      

 

    

     
 

    
 

   
 
Fig. 4 Prediction statistics of the SON and 

MAM seasons. 
 
4. OBSERVATIONS AND CONCLUSIONS 

 
We used wavelets, wavelet 

empirical orthogonal function analysis and 
wavelet independent component analysis of 
individual scale power and scale averaged 
wavelet power to analyze the spatial, 
temporal and frequency variability and 
dominant oscillations of EA rainfall and SST 
of the South Atlantic Ocean and Indian 
Ocean and explore teleconnection patterns 
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between SST fields from the Indian and 
south Atlantic Oceans and rainfall in EA to 
identify relevant predictor fields to statistical 
prediction models. The prediction skill 
showed that non-linear statistical 
teleconnection models exploited the non-
stationary and non-linear characteristics of 
climate data by using ingeniously identified 
data sets found between rainfall and SST 
via wavelet analysis.  
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