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1. INTRODUCTION 

Perhaps one of the most prominent dynamical 
features at coastlines is the sea breeze which is a 
thermally-induced diurnal boundary layer circulation.  
The numerical modeling of such circulations imposes 
interesting challenges, both from a perspective of 
interactions of larger-scale synoptic features with local 
inertia-gravity wave circulations and sensitivity to 
boundary layer parameterization schemes. 

The sea breeze is perhaps one of the most 
extensively studied phenomena in atmospheric 
dynamics.  Walsh (1974), Anthes (1978), and Rotunno 
(1983) provide a good review and a comprehensive list 
of references on the theoretical aspects of the 
phenomenon, while Wakimoto and Atkins (1994) and 
Atkins et al. (1995) give excellent reviews on the 
observational characteristics of the sea breeze.  
Simpson (1994) and, more recently, Miller et al. (2003) 
also provide excellent “primers” mostly on the 
observational features and some theoretical aspects of 
the sea breeze and other local wind phenomena. 

Nielsen-Gammon (2001) pointed to some 
interesting features of the land/sea breeze observed 
along the coast of Texas, based on the results obtained 
from the Texas 2000 Air Quality Study (TexAQS-2000) 
which was a major field program that ran from August 
15, 2000 to September 15, 2000 with the goal of 
understanding the formation and transport of ozone and 
particulate matter in eastern Texas, particularly around 
Houston. During TexAQS-2000, while measurements at 
several buoys showed that the land/sea breeze existed 
with some expected general characteristics (strong 
diurnal variation and the clockwise turning of the wind 
with time), measurements also revealed characteristics 
in support of Rotunno’s (1983) linear theory, some 
predictions of which were counter-intuitive compared to 
the common experience (for instance, a buoy located 35 
km offshore normally experienced a sea breeze during 
the night and a land breeze during the day). 

Although some of these interesting features of the 
sea breeze were explained with linear theory (Rotunno, 
1983) with success, the theory’s limitations, especially in 
the areas of variability of vertical stratification and 
diffusivity, resulted in discrepancies with the 
observations of the phenomenon, such as the 
symmetric nature of land- and sea-breeze circulations 
and the absence of a sea-breeze front which is a  
strongly nonlinear feature (Simpson, 1994).  Due to 
these limitations, the linear model should only be treated 
as a general framework for the land/sea breeze 
phenomenon while the description of the detailed local 
structure (which is mostly governed by the nonlinear 
features like the sea breeze front) can be carried out 
more effectively by the help of numerical models. 

Because of its strong sensitivity to small-scale 
variations and its highly nonlinear nature, progress in 
the accurate sea-breeze modeling has been slower than 
the development of the linear theory.  Among the major 
difficulties that are involved, successful integration of 
parameterization schemes with the dynamical model 
turns out to be one the most critical aspect of the sea-
breeze modeling.  Some of the factors which affect the 
land and sea breeze circulation are (Simpson,1994): (1) 
diurnal variation of the ground temperature, (2) diffusion 
of heat, (3) spatial and diurnal variation of static stability, 
(4) Coriolis force, (5) diffusion of momentum, (6) 
topography, and (7) prevailing winds.  Clearly, while 
most of these are variables/processes that are usually 
treated within the context of parameterization schemes, 
they are rarely subject to direct observation or real-time 
estimation.  Both of these facts (the importance of 
parameterization schemes in the context of sea-breeze 
modeling, and the lack/insufficiency of observations 
critical for the parameterization schemes involved) 
contribute to the complexity of the problem and warrant 
the integration of a well-designed parameter estimation 
procedure into the numerical model. 

One very robust approach to parameter estimation 
is the utilization of already existing data assimilation 
schemes.  Conventional Kalman filter techniques have 
long been used successfully in engineering for this 
purpose [see Gelb (1994) for a brief but useful 
discussion on this subject and further references].  
Problems encountered in such engineering applications, 
however, are usually of relatively small degrees of 
freedom and the use of full-Kalman-filter-type 
techniques are well warranted under these 
circumstances. With the introduction of the ensemble 
Kalman filter (EnKF) by Evensen (1994) for geophysical 
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applications, the feasibility of the Kalman filter approach 
has been extended to problems with much larger 
degrees of freedom typically found in atmospheric 
sciences (Burgers et al., 1998; Houtekamer and Mitchell, 
1998; Mitchell and Houtekamer, 2000; Houtekamer and 
Mitchell, 2001; Snyder et al., 2001; Snyder and Zhang, 
2003; Zhang et al., 2003).  This recent interest has 
emerged because of a number of appealing properties 
the filter offers (Zhang et al., 2002): no adjoints are 
required of the forecast model, estimates of forecast 
uncertainty are produced at no extra cost, it is highly 
parallel, and it is largely independent of the forecast 
model.  While these studies have mostly focused on the 
direct application of the filter to a specific atmospheric 
modeling environment to improve the initial state of the 
system, more recently, Anderson (2001) applied the 
filter’s statistical properties to the problem of model error 
by utilizing sample probability distributions of some of 
model parameters given observations.  Although the 
idea of inserting these parameters into the state vector 
and using assimilation to estimate values for unknown 
model parameters appears to be a very appealing 
technique, Anderson (2001) argued that “it remains an 
open question whether there is sufficient information in 
available observations to allow this approach in current-
generation operational models”. 

The purpose of this study is to investigate the 
potential of the EnKF in the area of model error 
estimation and reduction in a sea-breeze environment.  
Motivations for the selection of such a filter-dynamics 
combination are many-sided ranging from (1) better 
understanding of sea-breeze dynamics through 
uncertainty information produced by the EnKF and (2) 
existing lack of research in the area of EnKF integration 
to meso- and smaller-scale numerical models, 
especially with strong local forcing, to (3) improving our 
understanding and treatment of model error through the 
use of the EnKF.  Our approach is to tackle the problem 
in an increasing-complexity setting.  First, for the proof-
of-concept demonstration, results from an application of 
the EnKF to a highly idealized harmonic oscillator 
system are presented.  The second step involves 
integrating the EnKF to a more complicated two-
dimensional nonlinear sea-breeze model and 
performing similar tests as the first step.  The third and 
final step entails the investigation of whether findings of 
the first two steps can be generalized to an operational 
application, i.e. to a complex mesoscale numerical 
model like MM5.  This report should be viewed as the 
summary of a work-in-progress.  Our plan is to report 
more detailed results and discussions at the conference. 

 
 

2. DESCRIPTION OF NUMERICAL MODELS AND 
THE ENSEMBLE KALMAN FILTER 

2.1 The Stochastically-Forced Harmonic Oscillator 
Model 

Some of the key characteristics of the sea breeze 
can be represented by a very simple harmonic oscillator 
system of the following form: 

 2
0cos( ) ( ) .x x k x A t tµ ω ς+ + = +  (1) 

This is, of course, the equation for the relative 
displacement x of a linear spring with regular sinusoidal 
forcing.  The parameters µ, k2, A, and ω0 are viscosity, 
elasticity, forcing amplitude, and forcing frequency, 
respectively.  As this form of the spring system is linear 
in nature, differences between solutions with different 
initial conditions decay, rather than grow, with time, so 
the system is completely predictable (and observations 
are unnecessary).  Thus, in order to introduce 
uncertainty to the system, a stochastic error term, ς(t) , 
is included. 

By setting x v=  (thus defining v as the velocity), 
the single-equation system can be easily converted to a 
two-equation system of the following form: 
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For linear systems, it is relatively easy to model 
this system by a transition matrix approach. Similar to 
equation (2) but ignoring model error, we can describe a 
dynamical system in the following general matrix form: 

 ( )t= ⋅ +x M x g , (3) 

where x is the state vector (x;v), M is the dynamics 
matrix, and g(t) is the forcing in vector form. The 
transition-matrix Φk for the above equation can be 
defined through the equation (Gelb, 1974) 
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For a stationary (or even marginally stationary) 
transition matrix and a given time interval ∆t, it can be 
shown that (Gelb, 1974) 
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As a result, our linear numerical model can be described 
as 
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the final form of which used for the experiments 
presented in this study is as follows: 
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This version of the model has the forcing term 
directly integrated.  The stochastic error term, εm,  is 
explicitly added to the resulting form of equations (at 
every time step, a non-correlated error with a Gaussian 
distribution is computed and added on the forcing) and 
is related to the error term ς(t) through its variance, the 
dynamics matrix M, and ∆t. 

All of the assimilation experiments presented here 
were performed by observing only the variable x.  
Additionally, if not stated otherwise, parameter values 
have been fixed to facilitate comparison between 
experiments (k2 = 5s-2, µ = 1s-1, A = 500ms-2, and ω0 = 
4s-1). 

2.2 The Two-Dimensional Nonlinear Sea-Breeze 
Model 

Similar to Rotunno (1983), consider a Cartesian 
coordinate system in which a flat surface is represented 
by z = 0 and the coastline is at x = 0 with land for x > 0 
and sea for x < 0.  The general equations of motion can 
be simplified to a two-dimensional nonlinear,  non-
rotational, incompressible, and hydrostatic set in the 
following manner: 
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where u and w are horizontal and vertical winds, 
respectively; κu and κb  are vertical viscosity constants 
for momentum and heat, respectively; b = gθ’/θ0 is the 
buoyancy where g is the acceleration of gravity and θ  = 
θ0 + θB() + θ’(x, z, t) is the potential temperature where 
θ0 and θB are reference and background potential 
temperatures, respectively; N2 = (g/θ0)(∂θB/∂z) is the 
Brunt-Väisälä frequency; and the explicit heating term Q 
has the following form: 
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where A0 is a constant heating amplitude; x0 and z0 are 
horizontal and vertical length scales of heating, 
respectively; and ω0 is the diurnal frequency. 

Through a simple horizontal vorticity 
transformation, these equations can be converted into 
the following final two-equation form: 
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In this form, the prognostic model variables are 
perturbation vorticity (η’) and perturbation buoyancy (b’).  
Perturbations are obtained by partitioning variables as 
follows: 
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Winds u’ and w’ are diagnosed through a streamfunction 
in the following manner: 
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The numerical model is based on the equation set 

(10) - (12) has the following properties: 
(i) A leapfrog advection scheme for both of the 

variables, 
(ii) Crank-Nicholson (implicit trapezoidal) vertical 

diffusion scheme, 
(iii) Second-order and lagged numerical horizontal 

diffusion scheme, and 
(iv) Lagged Rayleigh-damping sponge layers at 

the sides and the top. 

2.3 The Filter 

The basic update equation of the Kalman filter is 
given as 

 ( ) ( )1
,

−
= +a b b T b T 0 bx x P H HP H +R y - Hx  (13) 

where x is the state variable and superscripts “a” and 
“b” denote analysis (posterior) and background (prior) 
quantities, respectively; H is the observational operator; 
R is the observational error matrix; y0 is the observation 
vector; and Pb is the flow-dependent background 
covariance matrix.  The ensemble provides an estimate 
for the background covariance matrix through the 
sample covariance relationship (Evensen, 1994): 

 ( ) ( )1ˆ .
1 i i

ieN
= − −

− ∑
Tb b b b bP x x x x  (14) 

where the hat denotes the estimate of a given quantity. 



One practical approach to the more complicated 
basic EnKF is the sequential technique (Snyder and 
Zhang, 2003) which is an algorithm that assimilates 
each observation sequentially.  In equation (13), 
consider the following sample estimate of the term PbHT 
[similar to equation (14)]: 

 ( ) ( )1ˆ .
1 i i

ieN
= − −

− ∑
Tb T b b b bP H x x Hx Hx  (15) 

For a single observation, this matrix becomes a column 
vector ĉ while the estimate of the term (HPbHT + R) 
becomes a scalar ŝ. 

One final modification to the original version of the 
EnKF is implemented through the ensemble square-root 
filter (EnSRF) that was introduced by Whitaker and 
Hamill (2002).  The idea behind this formulation was to 
modify the update equation in such a way to eliminate 
the necessity to perturb observations.  In this 
formulation, updating of the ensemble mean is carried 
out in the traditional manner while the perturbations are 
updated with the following formula: 
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For parameter estimation experiments described in 
this paper, while the original form of the EnKF has been 
used for the harmonic oscillator system, the modified 
sequential square-root version of the EnKF has been 
implemented for the two-dimensional sea breeze model. 

3. RESULTS 

3.1 Parameter Estimation For The Harmonic 
Oscillator System 

Parameter estimation experiments for the 
stochastically-forced harmonic oscillator system have 
produced very promising results.  All of the experiments 
described in this section had a fixed member number of 
50.  The model was integrated with a time step of 0.01s 
for about 4000 time steps.  Every result presented 
corresponds to an outcome averaged over 4 
randomized runs. 

One important aspect of parameter estimation is 
the fact that while parameters can be treated as model 

variables during the analysis step, they remain 
unchanged between analysis steps during model 
integration.  The result of this is that the ensemble 
variance itself remains unchanged during model 
integration while consistently decreasing at every 
analysis step.  This situation typically results in a 
phenomenon commonly known as filter divergence: as 
the parameter variance becomes smaller, the filter 
begins to “trust” the parameter estimate more and 
makes only minor adjustments to the background 
quantity at later analysis steps.  Another important 
complication related to a decaying parameter variance 
is that there exists a possibility for the 
observation/parameter correlations to become 
exceedingly small relative to the inherent sampling error 
associated with a finite ensemble.  This paper briefly 
addresses the filter divergence issue while sampling 
error is left to future investigation. 

Two sets of experiments were performed to 
demonstrate the effects of filter divergence on the 
estimation of a parameter.  In the first case, the 
parameter variance was left unmodified  throughout the 
experiment, while in the second, parameter variance 
was inflated back to its initial value following every 
analysis step.  These two ways to treat parameter 
variance represent two extremes of a variety of 
possibilities that can be implemented in more realistic 
applications.  For comparison purposes, the results from 
both types of variance treatment are shown here. 

For the first test, in addition to imperfect 
knowledge of the initial mode state, model error is 
assumed to originate from a single unknown parameter 
(the viscosity µ).  Initial values of the state for the “truth” 
and the ensemble that have been used for this test are 
summarized in Table 1 (“truth” represents an 
independent model run with specified properties) and 
the results are shown in Figure 1.  As explained 
previously, two different experiments were performed.  
In the first case, parameter variance is left unmodified 

 Truth Ensemble 
Initial x (m)  0.95 1.00 
Initial v (ms-1) 0.85 1.00 
Initial µ (s-1) 4.00 1.00 
Initial x variance (m2) -- 5.00 
Initial v variance (m2s-2) -- 5.00 
Initial µ variance (s-2) -- 0.25 

Table 1: Single unknown parameter case - Initial states for 
the truth and the ensemble model. 

Figure 1: Constant unknown viscosity case – Time series 
of the parameter viscosity and its variance.  The results 
with the unmodified variance experiment are shown in the 
left panel while the results with the inflated variance are 
shown in the right panel. 



throughout the experiment.  The results can be seen in 
the left panels.  We see that the filter quickly corrects 
the parameter value toward its true value  (top panel) 
while the variance converges toward zero (bottom 
panel).  In the second case, parameter variance is 
inflated at every analysis step, the results of which are 
shown in the right panels.  Similar to the first case, 
parameter correction is quite satisfactory yet response 
is slower.  By looking at these results, it may seem that 
the usefulness of a variance inflation technique may be 
questionable, yet the issue of filter divergence becomes 
much more apparent when the parameter is allowed to 
vary in time.  A second test is thus carried out for the 
time-dependent parameter case.  For this purpose, the 
true viscosity value is let to decrease linearly in time 
from a value of 4s-1 to 1s-1 while the ensemble mean 
value is initiated at 1s-1.  The results of these 
experiments are summarized in Figure 2.  Similar to the 
format of Figure 1, left panels and right panels show 
results with unmodified and inflated parameter variance, 
respectively, while top panels and bottom panels display 
time series of the parameter and its variance, 
respectively.  Signs of filter divergence are clearly 
visible for the unmodified variance tests.  We see that 
while the filter is able to update the parameter value 
quite well initially, as the variance begins to decrease, 
update magnitudes become smaller and the mean 
diverges from the true value.  The usefulness of 
variance inflation is very evident at this point.  When 
parameter variance is not allowed to decrease through 
an artificial inflation technique, enough ensemble spread 
is maintained at all times to accommodate for the time-
varying character of the parameter.  It is also interesting 
to note that parameter response in the inflated variance 
case is now comparable to the unmodified variance 
case.  It is believed that a technique that combines the 
two extreme approaches in a more efficient manner, 
perhaps by alternating them at certain time steps or 
even by constructing an on-line monitoring scheme to 

detect filter divergence and adjust variance accordingly, 
has the potential to improve the parameter estimate 
even further.  One alternative approach could be to 
include an autoregressive model for the evolution of the 
parameter.  Such a model would be able to grow the 
variance of the parameter in the absence of 
observations, while a combination of observations and a 
strong correlation with the parameter would result in the 
decrease of the parameter variance. 

Experiments with two unknown parameters have 
produced very similar results to the experiments with a 
single unknown parameter.  Only results from 
experiments with constant true parameters and variance 
inflation are presented here.  Time-dependent 
parameter estimation results are similar to the ones of 
constant-parameter estimation.  For this purpose, in 
addition to viscosity, forcing amplitude is assumed to be 
unknown. Table 2 summarizes initial values of the 
“truth” and ensemble states used for the experiment.  
The results of these experiments, in terms of time series, 
are presented in Figure 3.  We see that the filter is able 
to update both of the parameter values quickly toward 
their true values. 

A final result that will be shown here pertains to the 
concept of model error treatment.  The idea is whether, 
in a situation when it is not feasible to know or estimate 
model parameters specifically, it is possible to 

 Truth Ensemble 
Initial x (m)  0.95 1.00 
Initial v (ms-1) 0.85 1.00 
Initial µ (s-1) 4.00 1.00 
Initial A (ms-2) 750.00 500.00 
Initial x variance (m2) -- 5.00 
Initial v variance (m2s-2) -- 5.00 
Initial µ variance (s-2) -- 0.25 
Initial A variance (m2s-4) -- 10000.00 

Table 2: Two unknown parameter case - Initial states for 
the truth and the ensemble model. 

Figure 2: Time-dependent unknown viscosity case – Time 
series of the parameter viscosity and its variance.  The 
results with the unmodified variance experiment are shown 
in the left panel while the results with the inflated variance 
are shown in the right panel. 

Figure 3: Two constant unknown parameter case – Time 
series of viscosity (top panel) and forcing amplitude 
(bottom panel). 



compensate for model error by “simulating” it with 
stochastic error.  The setup of our experiments is ideal 
for such a test.  For this purpose, the magnitude of the 
forcing amplitude had a fixed 150ms-2 difference 
between the truth and forecast runs (thus resulting in a 
parameter error).  The forecast run is designed so that 
only model variables x and v are updated by the EnKF 
(hence parameter error does not change during the 
forecast run).  A stochastic error is then introduced to 
the forcing.   Similar to previous experiments, only 
model variable x is observed.  Figure 4 shows the 
results and consists of two plots; the root-mean square 
error of model variable x  (top panel) and model variable 
v (bottom panel) as a function of the magnitude of 
forecast stochastic error (in terms of its standard 
deviation).  The experiments are performed for multiple 
values of truth stochastic error which is reflected by the 
lines with differing styles.  The immediate result that 
strikes the eye is the fact that introduction of a small 
stochastic error to the forecast run actually reduces the 
root-mean square error of both of the model variables 
which is an indication that stochastic error does have 
the ability to compensate for parameter error.  Another 
result worth mentioning here is that with increasing 
stochastic error in the truth, relative improvements in the 
model variable estimates become more pronounced. 

3.2 Preliminary Results From Two-Dimensional 
Sea-Breeze Model Runs 

The sea breeze model described here and the 
associated sequential square-root EnKF are still in their 
developmental stage.  As of writing of this manuscript, 
the model was producing stable results while the EnKF 

was still being tuned for best performance.  As a result, 
in this section, some very preliminary results are 
presented. 

To begin with, a comparison between nonlinear 
and linear versions of the model is demonstrated.  Both 
of the experiments were run using the same set of 
model parameters with the exceptions that, for the linear 
run, (a) the nonlinear terms in model integration were 
explicitly turned off, (b) coefficients of vertical diffusion 
were set to zero, and (c) heating amplitude is weaker 
(as this is known to contribute to nonlinearity).  Some of 
the key properties of these model runs are summarized 
in Table 3 while key model variables at 76 hour into 
model integration are plotted in Figure 5 (perturbation 
vorticity and buoyancy) and Figure 6 (perturbation winds 
and streamfunction).  In both of the figures, linear 
results are shown in top panels while nonlinear results 
are shown in bottom ones. 

Our linear run produced results comparable to 
Rotunno’s (1983) analytical solution  for latitudes less 
than 30°.  The flow response is in the form of internal-
inertial waves that extend to infinity along shallow rays 
emanating from the coastline.  At plotted model time (76 
hours or a 00:00Z phase), buoyancy is at its peak on 
land (by a 6-hour lag after maximum heating) and 
surface winds at the coastline are onshore depicting the 
onset of a sea-breeze scenario (the peak phase of the 
sea breeze occurs roughly 2 hours after the peak phase  
of buoyancy which is not shown here).  The addition of 
nonlinearity introduces interesting variations to the linear 
response.  The most prominent feature is the sea-
breeze front that is in the form of a shallow “shock 
wave” – a strong gradient in both vorticity and buoyancy 
fields at the location of the front.  We also see that the 
front has penetrated inland.  Wind response is also in 
accordance with the frontal structure: strong 
convergence is present at the surface and lifting occurs 
along the front.  Outside the frontal zone, the flow no 
longer fully exhibits the uniform linear internal-inertial 
wave structure but contains higher-harmonic signature 
typical for nonlinear sea breeze circulations. 

Time Interval (s) 150 
Horizontal Grid Spacing (m) 4000 
Vertical Grid Spacing (m) 50 
Mean Horizontal Wind (ms-1) 0 
Mean Static Stability (s-1) 10-4 

Coefficients of Vertical Diffusion 
(m2 for Vorticity, ms for Buoyancy) 

0.25 
(none for linear) 

Heating Amplitude (ms-3) 5x10-7 – linear 
5x10-6 – nonlinear 

Horizontal Length Scale of Heating 
(m) 10000 

Vertical Length Scale of Heating (m) 500 
Time of maximum heating 18:00Z 

Table 3: Key properties of sea-breeze model runs . 

Figure 4: Compensation for parameter error with 
stochastic error – Root-mean square error of model 
variables x (top panel) and v (bottom panel) as a function 
of stochastic error magnitude (standard deviation, ms-2) of 
forcing amplitude in the presence of a forcing amplitude 
error of 150ms-2.  Different lines represent differing 
magnitudes of truth stochastic error. 



A preliminary test with the ensemble Kalman filter 
has also produced promising results.  In this test, one 
analysis cycle has been performed after a 12-hour 
model run using 20 ensemble members and simulated 
buoyancy observations placed at 20km spacing in the 
horizontal and 250m in the vertical.  Initial fields were 
obtained by adding random perturbations on a 
realization taken from an independent run.  Figure 7 
shows the prior and posterior distribution of the 
difference between mean and true buoyancy for the 
analysis step at 12 hours.  We see that there is a 
domain-wide reduction of buoyancy error (measured as 
the difference of the ensemble mean from the truth).  At 
this time step, the domain-averaged root mean square 
error drops from 0.048ms-2 to 0.015ms-2.  One 
peculiarity about the results is that some noise is 
introduced at the surface, especially around the sea-
breeze front where phase difference between the mean 
forecast field and the truth field is most pronounced.  
Although this noise does not influence the domain-wide 
performance of the filter, it does introduce some 
unbalanced structure, especially in the vicinity of the 
frontal zone, that could influence the propagation of the 
front in later model steps.  This phenomenon is currently 

being investigated in terms of the covariance structure 
that leads to it and later model response. 

4. FUTURE WORK 

Preliminary evaluations of the EnKF for parameter 
estimation have been very promising and resulted in a 
variety of new ideas to be explored in the near future.  
Our plans are many-fold.  As mentioned in previous 
sections, the development of the sea-breeze model and 
its associated EnKF is not yet fully completed.  In this 
regard, further investigation of filter performance utilizing 
the covariance information produced by the ensemble is 
the next logical step.  Issues related to the noise 
introduced by the filter will be scrutinized and the filter 
will be fine-tuned to eliminate these problems. 

Application of the EnKF to the sea-breeze problem 
offers numerous paths of analysis that can potentially be 
followed.  While our main focus will be on parameter 
estimation and model error, the covariance structure 
produced by the ensemble is also planned to be 
analyzed to improve our understanding of error growth 
mechanisms and predictability of thermally-induced 
local circulations. 

Figure 5: Outputs from the sea-breeze model: Vorticity and 
Buoyancy - Top panels are from the linear run while bottom 
panels are from the nonlinear run.  The coastline is at x = 0 
with x > 0 representing the land and x < 0 representing the 
sea.  Output is plotted at 78 hours into model integration. 

Figure 6: Outputs from the sea-breeze model: Winds and 
Streamfunction - Top panels are from the linear run while 
bottom panels are from the nonlinear run.  The coastline is 
at x = 0 with x > 0 representing the land and x < 0 
representing the sea.  Output is plotted at 78 hours into 
model integration. 



Our ultimate goal is to apply the experience and 
information obtained from experiments with the 
harmonic oscillator and the two-dimensional sea-breeze 
model to a more complicated operational environment 
and study parameter estimation using MM5 in order to 
improve both our forecasting skill for local sea-breeze 
type of circulations and our understanding of model 
error behavior. 
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