
J11.3           On the Challenges of Identifying the “Best” Ensemble Member in Operational 
Forecasting 

 
David R. Bright * 

NOAA/NWS Storm Prediction Center, Norman, OK 
 

Paul A. Nutter 
CIMMS/University of Oklahoma, Norman, OK 

 
 
 

1. INTRODUCTION 
 

Operational weather forecasters have an 
abundance of numerical weather prediction (NWP) 
models that can be used in the forecast process.  
The Environmental Modeling Center (EMC), part 
of the National Weather Service's (NWS) National 
Centers for Environmental Prediction (NCEP), 
provides multiple runs daily of a variety of NWP 
models [e.g., Rapid Update Cycle (RUC), Nested 
Grid Model (NGM), Eta, Non-Hydrostatic 
Mesoscale Model (NMM), and the Global Forecast 
System (GFS)].  Short- and medium-range 
ensemble prediction systems are also supported 
by NCEP.  Additionally, many universities and/or 
NWS field offices now produce their own real-time 
NWP forecast over limited area domains.  The 
abundance of NWP output has led to a multimodel 
approach, such that forecasters implicitly create a 
"poor person's ensemble" by analyzing output 
from several models.  Experienced forecasters 
use knowledge of model physics and biases to 
accept or dismiss certain aspects of a NWP 
solution, thereby weighting the NWP guidance and 
in effect creating a modified consensus forecast.   

Ensembles continue to gain popularity in 
the operational environment and in many ways 
represent a formal extension of the familiar 
multimodel approach.  But, time does not allow a 
forecaster to treat a large ensemble as individual, 
deterministic NWP forecasts.  Considerable 
information is gleaned from the mean, spread, and 
probabilistic properties of the ensemble, but this 
approach may not be completely satisfying to 
meteorologists accustomed to viewing 
deterministic output.  The reasons for some 
dissatisfaction in the ensemble approach is 
because the ensemble mean is dynamically 
inconsistent and generally smoothes details 

relevant to the mesoscale forecast, the ensemble 
spread is often under-dispersive, and probabilistic 
guidance may not translate directly to increased 
meteorological insight.   

During the 2003 Storm Prediction 
Center/National Severe Storms Laboratory 
(SPC/NSSL) Spring Program (Levit et al. 2004), 
the NCEP Short-Range Ensemble Forecast 
(SREF) was used to determine if ensembles could 
aid in the prediction of severe convective weather.  
During the program, the question arose as to 
whether any SREF members could be eliminated 
from further consideration if they were not 
shadowing incoming observations during early 
portions of the run.  This paper examines the 
concept of "thinning" SREF members from the 
ensemble if they perform poorly early in the run, 
and if early "best" members continue to verify best 
during the remainder of the forecast period. 

 
 
2. THEORETICAL RESULTS 
 

The three variable Lorenz (1963) model 
may be used to illustrate simply why attempts to 
select the best member from an ensemble of 
perfect model forecasts do not yield productive 
guidance. 
 
 
2.1: Flow Dependence and "Return to Skill" 
 

An ensemble forecast system is 
comprised of a set of many individual deterministic 
forecasts. In each of those forecasts, errors 
generally increase with time up to a limit 
determined by the climate of the system.  The 
error growth rate is different for each individual 
forecast and may even become negative so that 
errors decrease with time.   Consider now the 
question of whether a single deterministic forecast 
can provide useful guidance once it has already 
experienced a loss of skill.   We call this effect 
"return to skill" and demonstrate that it is 
equivalent to flow dependence. 
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Fig. 1 reveals the trajectories of two 
independent simulations having rather similar 
starting positions.  The initial proximity of the 
simulations is shown by the small errors at time 
t=0 in the upper right panel.  By following the three 
dimensional trajectories of the simulations, it is 
clear that the red trajectory makes two loops 
around each half of the attractor while the black 
trajectory has only one loop on the positive 'x' side 
of the attractor and three loops around the 
negative 'x' side.  

The total error drops to nearly zero after 
about 3.75 units of time. Hence, there has been a 
return to skill, but it is not physically useful since 
the two simulations arrived at this point by 
following completely different routes through 
phase space.  To use an adage, the simulations 
are, "right for the wrong reason.”  Hence, return to 
skill is simply an artifact of flow dependence, and 
could negatively impact forecast guidance in large 
dimensional weather prediction models. 

Another feature seen in the error scores of 
Fig. 1 is the danger of comparing forecasts using 
only one variable.  The difference between values 
of z is often rather small compared to differences 
between values of x and y.  Thus, if the difference 
between the simulations is measured using only 
the z-component, the detrimental impact of the 
other variables on the overall quality of the 
forecast is ignored. This could be misleading since 
large differences between the x and y values form 
as the two simulations track through completely 
different parts of the phase space.  Similar 
artifacts will be found in weather forecast models, 
especially when the number of variables we can 
evaluate is small compared to the enormous 
degrees of freedom. 
 
 
2.2: Best Member Selection 
 

The theoretical model is now used to 
illustrate how rapidly the “best” ensemble member 
changes.  It may remain tempting to try and select 
a best member, as an ensemble is merely a 
collection of deterministic forecasts and the 
ensemble mean may not be attractive since it is 
dynamically inconsistent and often smoothes out 
mesoscale features that are of operational 
interest.  Nonetheless, attempting to extract the 
single best member and apply it as a deterministic 
forecast is not productive.  (Note that we are 
employing the fundamental assumption that each 
ensemble member is equally likely.) 

Results from running 1000 independent 
ensemble simulations with the Lorenz model (Fig. 

2a) show the ensemble mean square error (MSE) 
converges toward twice the climatological error 
variance.  This result is expected (Leith 1974) 
since the model is unbiased.  The deterministic 
forecast is usually considered to have lost skill 
when the ensemble MSE exceeds the climate 
error variance, in this case after about 6 time units.  
The results also show that the sum of ensemble 
mean error and ensemble dispersion (spread) is 
equal to the ensemble MSE.  All three statistics 
converge to theoretically anticipated values after 
about 9 time units.  The statistical curves have 
retained "steps" as the trajectories move from one 
side of the attractor to the other. 

The solid black curve in Fig. 2a is a count 
of how many ensemble members have uniquely 
had the smallest difference from the control 
simulation.  To use a sports or racing analogy, it is 
a measure of the number of unique "leaders."  The 
number of ensemble members limits the maximum 
value.  We count only unique best members rather 
than the total number of “lead changes” because 
the latter would improperly result from flow 
dependence and “return to skill” as discussed 
above. Fig. 2a shows that in a perfect ensemble 
system, the number of unique best members 
grows linearly with time for about the first 0.5 time 
units, and then increases at an inverse 
exponential rate.  About half the ensemble 
members could have been considered best within 
1.5 time units, or about a quarter of the time in 
which the overall ensemble has lost skill.   

Operational forecast models always 
contain biases and other model system errors.  To 
emulate this effect, a small constant forcing term 
has been added to the x- and y-variables of the 
Lorenz system (Palmer 1995).  Three different 
constants were used for 20-member subsets of 
the full 60-member ensemble to emulate the use 
of a multi-model ensemble. The additional forcing 
terms cause the solution trajectories to loop a few 
extra times around one side of the attractor before 
switching back to the other side.  This behavior is 
seen in the error statistics as skill is lost within 1/3 
of the time of the unforced model and ensemble 
mean error (and hence, the ensemble MSE) 
exceeds the climate error variance before 
converging to the saturation value.   

While increasing the rate of error growth 
and spread, the additional model forcing actually 
slows the growth rate for the number of unique 
best ensemble members.  The most probable 
reason for this can be explained by the enhanced 
residence time for solution trajectories around 
each attractor.  Indeed, the control solution may 
switch from one side of the attractor and back in 



the same time that a forced solution remains on 
just one side. Consequently, an individual 
ensemble member may have the best match to 
the control solution twice during that period, and 
as such does not contribute to the count of unique 
best members.   

Nearly the same results were obtained for 
other model variables, and also when choosing 
the ensemble member that best matches the 
ensemble mean rather then the control simulation. 
 
 
3.  OPERATIONAL RESULTS: NCEP SREF 
 

The NCEP SREF is comprised of 15 
members and runs routinely at 09 UTC and 21 
UTC through 63 forecast hours.  At the time of this 
writing, the system employed three models: the 
Eta with Betts-Miller-Janjic parameterized 
convection; the Eta with Kain-Fritsch 
parameterized convection; and the Regional 
Spectral Model (RSM).  Each model configuration 
contains five members including an unperturbed 
initial condition and four perturbed initial conditions 
created through breeding of growing modes.  
[More information on the NCEP SREF is available 
at the following URL: http://wwwt.emc.ncep.noaa. 
gov/mmb/SREF/SREF.html and from Du and 
Tracton (2001).] The NCEP SREF is examined 
herein to test whether an ensemble member 
exhibiting the best forecast early in the run is likely 
to retain that position at later times.  

The 09 UTC and 21 UTC SREF forecasts 
were archived for 24 days during August 2003.  
Verification was based on the RUC analyses at 00 
UTC and 12 UTC.     The data were compared on 
the AWIPS regional grid 236 (see 
http://www.nco.ncep.noaa.gov/pmb/doc/on388/ 
tableb.html for grid specifications) which has an 
approximate grid spacing of 40 km.  Following the 
ideas of Roulston and Smith (2003), a root mean 
squared error (RMSE) based on 22 normalized 
variables was used to determine the best member 
(Table 1).  Each variable was normalized by its 
standard deviation across the domain, and then all 
22 variables were summed to arrive at the 
normalized RMSE (NRMSE).   In order to avoid 
problems associated RUC lateral boundary 
conditions, calculations were restricted to a region 
over the central United States (Fig. 3).  
Comparisons to the RUC analyses were made at 
00 UTC and 12 UTC corresponding to forecast 
hours of F03, F15, F27, F39, F51, and F63. 
 
 
 

Table 1.  A listing of the 22 normalized variables used to 
determine the best ensemble member. 
 
LEVEL                                                           VARIABLE 
Surface:                                                       Sea Level Pressure 
Tropospheric:                                   Precipitable Water; CAPE 
2 meter:                                                Temperature; Dew Point 
10 meter:                                                                             U; V 
700, 500, 300 hPa:                  Temperature; Mixing Ratio; U; V;  
                                                                     Geopotential Height 
3) 
 
3.1 Time Averaged Results 
 

Based on the NRSME for 24 days in 
August 2003, the ensemble mean is easily the 
best forecast for all times through 63 hours (figure 
not shown).  Because the NRMSE continues to 
grow through the entire 63-hour forecast, and 
comparisons are made only at 00 UTC and 12 
UTC, not all members have an “opportunity” to 
become the best member.  Thus, a figure exactly 
like Fig. 2 is impossible to construct, and results 
are presented as a percentage of possible unique 
best members.   

A simple mathematical calculation shows 
that the ensemble mean should always have the 
smallest error (Toth and Kalnay 1997), and 
therefore dominates the scoring of the best 
member (Fig. 4 – dashed line).  However, if the 
ensemble mean is excluded, then the percentage 
of possible unique best members increases 
steadily with time (Fig. 4 – solid line), reaching 
about 45% by F63.  In other words, with six 12-
hourly verification steps indicated in Fig. 4, the 
NRMSE indicates that about three members are 
uniquely considered best out of the six that could 
have been identified during the forecast. These 
results do not consider whether or not the 
differences in NRMSE are statistically significant. 

Results shown in Fig. 2b suggested that 
model biases may decrease the count of unique 
best members by slowing the forecast response to 
error growth.  This may partly explain why only 
half of the available SREF ensemble members 
were considered best during the forecast period.  
Furthermore, repeat (non-unique) best members 
were not scored as a “lead change” because that 
would indicate a useless return to skill.  On the 
other hand, we have not attempted to determine 
error growth rates or the expected time limit of 
SREF skill.  If the forecasts remained skillful at the 
end of 63 hours, then we should not expect all of 
the available ensemble members to be uniquely 
counted as the best.   

The ranking of the NRMSE scores were 
used to calculate the correlation coefficient 



between the ensemble member rank at some 
forecast time and the rank at a later forecast time.  
Figure 5 shows the correlation of the ensemble 
membership rank, both with (dashed) and without 
(solid) the ensemble mean, to its rank 12 hours 
earlier.  The correlation appears to increase 
gradually during the forecast, and inclusion of the 
ensemble mean always improves the result.  
Looking at longer lead times, the correlation of the 
ensemble rank at F15 to the ensemble rank 24, 
36, and 48 hours later (F39, F51, and F63, 
respectively) decreases from about 0.5 to 0.3 (Fig. 
6).  Thus, it appears the ensemble rank early in 
the forecast has a rather low correlation to the 
ensemble rank one to two days later. This 
indicates that an ensemble member should not be 
isolated as a preferred deterministic forecast for 
the remainder of the forecast, nor should 
remaining members be dismissed from further 
analysis.   

 
 
3.2 Individual Examples 
 

Many members of an ensemble contribute 
useful information to the forecast, and that 
contribution appears to be a nonlinear function of 
location, time, and variable.  For example, Fig. 7 
shows the F15 NCEP SREF member (including 
the ensemble mean) that most closely matches 
the RUC analysis of 2-meter dew point (F15 SREF 
forecast valid at 00 UTC 28 May 2003).  The 
number posted indicates the ensemble member 
closest to the RUC analysis at each grid point 
[Black 0=ensemble mean; Red=Eta-BMJ 
(members 1-5);  Yellow=Eta-KF (members 6-10); 
Blue=RSM (members 11-15).  Numbers 1, 6, and 
11 represent the control members of the Eta-BMJ, 
Eta-KF, and RSM, respectively.]  Only grid points 
with a dew point temperature greater than 50 F 
are plotted; it is clear there is little spatial 
correlation between ensemble members, and no 
one member dominates a large region of the 
domain.   

In a second example, a NRSME 
multivariable calculation (as described in section 
3.1) was made over a portion of the Northern 
Plains to determine if any SREF member had a 
better forecast of a short wave trough moving 
through the area on 2 June 2003 (Fig. 8).  A 
scatterplot of F15 ensemble rank to F39 ensemble 
rank indicates a very low correlation (Fig. 9 – 
correlation coefficient only 0.28).  The ensemble 
mean is ranked first at both F15 and F39, while an 
Eta member ranked 11th at F15 becomes the best 
individual member at F39.  

 Because the ensemble mean is usually 
the best member, one could attempt to locate the 
member closest to the mean.  However, applying 
this approach to the 09 UTC 3 November 2003 
NCEP SREF for 500 hPa geopotential height 
results in a collage of ensemble members and a 
dynamically inconsistent, noisy analysis (Fig. 10).   
 
 
4. SUMMARY 
 

While operational forecasters can extract 
useful information through detailed examination of 
individual NWP solutions, a comparison of 
observations with individual members in an 
attempt to extract a single best ensemble member 
will not yield the best forecast over time.  Both the 
simple theoretical modeling approach and analysis 
of the NCEP SREF support this finding.  Similarly, 
thinning an ensemble by eliminating the “worst” 
members early in the run degrades the future 
value of the ensemble.  Both of these findings 
imply that a “model of the day” concept, where a 
single NWP solution is chosen upon which to base 
an entire forecast, is fundamentally flawed. 

The theoretical results show that if models 
are perfect and unbiased, then forecasters could 
only evaluate the statistical aspects of the 
ensemble.  However, our NWP models are far 
from perfect, and experienced forecasters can use 
knowledge of model physics and biases to add 
value to the ensemble by dismissing certain 
aspects of the solution due to a misrepresentation 
of simulated atmospheric processes (e.g., Baldwin 
et al. 2002).   

Despite the model error contained within 
the NCEP SREF, there are some interesting 
similarities to the theoretical results.  Most 
importantly, the number of unique best members 
derived from a multiparameter error calculation 
increases steadily with time through the 63-hr run.  
Thus, despite the existence of known model error, 
attempting to choose or eliminate members may 
degrade the future value of the SREF because 
“bad” members may appear as the best member 
at a later time.  Experienced forecasters who 
understand the physics and biases of the 
component models can improve the ensemble 
forecast at a given forecast time by accounting for 
(either statistically or conceptually) known model 
error; nonetheless, all ensemble members should 
be retained for a complete analysis at other 
forecast hours.   
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6. FIGURES 

 
Fig. 1:  Phase space trajectories of two independent Lorenz model simulations (red vs. black) originating at nearly the 
same position around (x=0,y=0,z=25). Dots connected by blue line segments identify solution values at regular time 
intervals.  The upper right panel shows how the distance between the two trajectories changes with time for each model 
variable (x2-x1,y2-y1,z2-z1) and for the root mean square difference [√( (x2-x1) 2+(y2-y1) 2+(z2-z1)2 )]. 

Fig. 2: Ensemble error statistics for the x-component of the Lorenz model obtained as averages over 1000 independent 
60-member ensembles. Statistics from an unmodified (perfect) model are shown in (a) and those from a weakly forced 
version are shown in (b).  The horizontal dashed lines show the values of 1 and 2 times the model's climate error variance 
calculated using random samples from the x-component of a long control simulation. 



 
Fig. 3: The sub-domain over central U.S. considered in determining the best NCEP SREF member (inside black box). 
 
 
 
 

 
Fig. 4:  The percent of possible unique NCEP SREF best members, both excluding the mean (solid) and including the 
mean (dashed). 
 



 
Fig. 5:  The correlation coefficient of NCEP SREF member rank to the rank 12-hours earlier, both excluding (solid) and 
including (dashed) the ensemble mean.   
 
 

 
Fig. 6:  The correlation coefficient of the NCEP SREF (excluding the ensemble mean) member rank at F15 to the rank at 
F39, F51, and F63. 



 
Fig. 7:  The NCEP SREF ensemble member closest to the RUC analysis valid at 00 UTC 28 May 2003.  (Black 0 
indicates the ensemble mean; Yellow=Eta-BMJ members; Red=Eta-KF members; and Blue=RSM members) 
 
 

 
Fig. 8:  Domain considered (black, solid line) for determining the best NCEP SREF ensemble member from the 09  
UTC 01 June 2003 case.  The 500 hPa geopotential height (solid) and absolute vorticity (dashed) are from the RUC 
analysis valid at 00 UTC 02 June 2003. 



 
Fig. 9: Scatterplot of the NCEP SREF ensemble rank, including the ensemble mean (black), at F15 to F39 (Red=Eta-
BMJ; Yellow=Eta-KF; Blue=RSM) from the 09 UTC 01 June 2003 NCEP SREF.  (Correlation coefficient = 0.28.) 
 
 

 
Fig. 10: As in Fig. 7, except the NCEP SREF member closest to the mean at 500 hPa (F63 valid 00 UTC 06 November 
2003).  The solid line is the 500 hPa geopotential height based on the member closest to the mean.  


