
Mining NEXRAD Radar Data: An Investigative Study 
 

Xiang Li, Rahul Ramachandran, John Rushing and Sara Graves 
Information and System Center, University of Alabama in Huntsville 

 
Kevin Kelleher  

National Severe Storms Laboratory, NOAA 
 

S. Lakshmivarahan 
School of Computer Science, University of Oklahoma 

 
Douglas Kennedy 

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma 
 

Jason Levit 
Center for Analysis and Prediction of Storms, University of Oklahoma 

 
 
A collaborative team of meteorologists and data mining experts conducted a case study to detect and 
classify mesocyclone signatures in WSR-88D radar data using mining techniques.  Radar data for May 6th, 
1994 and May 11th, 1992 from Norman and Tulsa, Oklahoma was used in this case study.  Two 
Mesocyclone Detection Algorithms (MDA) were used in this study.  One (NSSL MDA) is a 
computationally optimized version of the National Severe Storm Laboratory (NSSL) MDA.  The second 
(UAH MDA) was created based upon the original NSSL algorithm, but with some image processing 
techniques.  The primary difference between the two algorithms is in the technique used to segment the two 
dimensional (2D) mesocyclone signatures.  The UAH MDA uses a region growing technique; hence the 
shape of the feature is no longer a restriction.  True or false labels were assigned to the mesocyclone 
features generated from the MDA by comparing with a truth set derived by an expert using the NSSL 
algorithm. This labeled feature data set was then used in a series of analysis experiments.  The objective of 
these experiments was to: Evaluate the performance of different classifiers in their ability to distinguish 
between a true mesocyclone signature versus an artifact or noise; Optimize the classification results by 
selecting key parameters from the feature data set using different feature reduction techniques; Explore the 
patterns in the feature data set using various clustering algorithms; and determine the suitability of the 
algorithm as a data mining tool. 

 
 
1 Introduction 
 
Mesocyclones are rotating updraft/downdraft structures inside severe thunderstorms.  Detection of 
mesocyclones is important for severe weather forecast because over 90% of mesocyclones are accompanied 
by severe weather such as tornadoes or large hail [1].  Mesocyclone signatures can be identified from the 
Weather Surveillance Radar –1988 Doppler (WSR-88D, [2]) and appear as couplets of incoming and 
outgoing radial velocities. WSR-88D, the next generation weather radar deployed in the United States a 
decade ago, has proved to be extremely valuable for severe weather forecasts and warning. Experienced 
radar analysts can identify mesocyclone signatures in WSR-88D data.  However, this manual identification 
process is tedious and time-consuming, and can be overwhelming during a severe weather outbreak.  
Consequently, several mesocyclone detection algorithms (MDA) have been developed ([3], [4], [5]) for 
automated mesocyclone signature detection. The National Severe Storm Laboratory (NSSL) MDA [3] is 
one such algorithm and is an enhancement to the Build 9 WSR-88D Mesocyclone Algorithm (B9MA) [4].  
Compared to B9MA, NSSL MDA identifies a broader spectrum of mesocyclones and has an improved 
probability of mesocyclone feature detection.  The latest version of the NSSL MDA also includes a neural 
network classifier to filter out false mesocyclone signatures [6]. 
 
This paper describes an investigative case study that was conducted to detect and classify mesocyclone 
signatures from WSR-88D data using data mining techniques. This research consisted of two components. 



The first component was to develop a mining algorithm to detect mesocyclone signatures from WSR-88D 
radar data. In addition to the accuracy, the major requirement for the algorithm was computational speed.  
The algorithm should be fast enough to efficiently and expeditiously process large volumes of archived 
WSR-88D data.   The second component of this research was to identify “true” mesocyclone signatures 
using the detected algorithm output.  In order to meet this objective, we 1) evaluated the performance of 
different classifiers in their ability to distinguish between a true mesocyclone signature versus an artifact or 
noise, 2) optimized the classification results by selecting relevant features from the mesocyclone feature 
dataset using different feature reduction techniques, and 3) explored the patterns in the feature data set 
using various clustering algorithms. 
 
Section 2 describes the data used in this case study.  Section 3 briefly describes the mesocyclone detection 
algorithm developed in this study as well as the classifiers, feature selection and clustering algorithms that 
were used.  Results and analyses are described in section 4.  Finally, section 5 summarizes this 
investigative study.   
 

2 Data Description 
 
Dealiased WSR-88D Level II data for the following dates were used in this study; 1) May 11, 1992 over 
Norman, Oklahoma (N35°13′48′′, W97°16′80′′) with radar station name of KOUN; 2) May 6, 1994 over 
Tulsa, Oklahoma (N36°10′30′′, W95°33′53′′) with radar station name of KINX. Tornado outbreaks took 
place at these places during these selected time periods.  The WSR-88D data contains three fields of 
measurement: reflectivity, velocity, and spectrum width. The velocity field was used for mesocyclone 
detection.  The reflectivity field was also used as an additional parameter for the detected mesocyclone 
signatures.  For the May 11, 1992 case (also referred to as KOUN case), there were a total of 50 WSR-88D 
volume scans available, covering the time period from 17:40 UT to 22:30 UT. For the May 6 1994 case 
(also referred to as KINX case), there were a total of 117 volume scans available, covering the time period 
from 20:30 UT to 08:40 UT the next day. For the two cases, validation data sets were available from NSSL 
derived from the original NSSL MDA. These data sets were used in the classification process as the “truth” 
data. 
 
 
3 Methodology 

3.1 Mesocyclone Detection Algorithm 
 
Mesocyclones contain a velocity signature known as a Rankine Vortex [7], representing incoming and 
outgoing radial velocity couplets in the radar velocity field.  For a segment of consecutive gate 
measurements with the same range and increasing scan angle, this signature is known to have continuously 
increasing velocity values followed by gates with similar values, but opposite signs, that decrease in 
magnitude with increasing scan angle.  Identifying shear segments based on this signature is the most 
intuitive approach.  This algorithm has three steps: 1) identifying 1-dimensional (1D) shear segments, 2) 
identifying two-dimensional (2D) shear regions in a scan sweep, and 3) collocating shear regions across 
elevation scans into 3-dimensional (3D) mesocyclone signatures.  The criteria used to determine the 
strength of the shear segments were similar to the ones used in NSSL MDA.  The major difference between 
the MDA developed in this study (hereafter referred to as UAH MDA) and the NSSL MDA is in the 2D 
shear region identification. The NSSL MDA builds 2D shear regions by examining all 1D shear candidates, 
selecting the ones that satisfy location, shape and size constraints and then grouping them into 2D shear 
region.  The UAH MDA builds 2D shear regions using a region-growing technique [8], i.e., grouping those 
1D shear segments adjacent to each other into a 2D region. There is no shape restriction for the identified 
2D shear regions. 
 
A feature vector is calculated for each 2D shear region and its features include central azimuth angle, 
central range, central height, diameter, shear, maximum Gate-to-Gate Velocity Difference (GTGVD), 
rotational velocity difference (Vrot), and mesocyclone strength index, as defined in [3]. For a 3D 



mesocyclone signature, a number of features such as base and top heights, core base and top heights are 
calculated in addition to the mean values of the corresponding 2D features.  Thus, each 3D mesocyclone 
signature contains twenty features: 1) base height, 2) depth, 3) core base height, 4) core depth, 5) base 
diameter, 6) base shear, 7) base Vrot, 8) base GTGVD, 9) mean diameter, 10) maximum diameter, 11) 
mean shear, 12) maximum shear, 13) maximum GTGVD, 14) height of maximum GTGVD, 15) maximum 
Vrot, 16) mean strength index, 17) maximum strength index, 18) mean reflectivity, 19) maximum 
reflectivity, and 20) rotational. The rotational feature indicates whether or not a mesocyclone contains 
velocity values with opposite signs. 
 
For classification purposes, each identified 3D mesocyclone signature was labeled as either “true” if it 
matched with one of the NSSL true signatures or “false” if it did not match with any NSSL-validated 
signature. A 3D signature from UAH MDA was matched with a 3D signature from NSSL MDA if the 
spatial locations of the two signatures were within 8 km and the depth of 3D signatures overlapped with 
each other.  The 3D signature data set was then randomly split into equal halves to be used as the training 
and testing data in the classification process. 
 

3.2 Classification, feature selection and clustering 
A classifier is necessary to weed out the false mesocyclone signatures identified by the detection algorithm.  
These false signatures may be due to noise or other artifact.  In this study, two classifiers are examined, 
naïve Bayes classifier and Support Vector Machine (SVM) classifier [9]. 
 
Bayes classifier is a well-known supervised classifier. It classifies samples based on the Bayes rule that an 
unknown sample is assigned to a known class with maximum posteriori probabilities. The Bayesian 
classifier is optimal with respect to minimizing the classification error probability.  Support Vector 
Machine (SVM) is a new classification technique based on statistical learning theory.  SVM classifiers can 
produce a non-linear decision boundary that separates two classes with the largest margin.  Detailed 
description of the two classifiers can be found in Hastie, et al. [9].  
 
Feature selection is an important step in the classification process.  Computational complexity and classifier 
generalization are two of the major reasons that make feature selection important. In this study, three 
feature selection methods were applied to the two classifiers to optimize classifier performances. The three 
methods were: 1) forward feature selection, 2) backward feature elimination, and 3) feature selection using 
the Genetic Algorithm (GA).  The features that are most frequently selected are considered crucial in 
classifying the mesocyclone signatures. 
 
Two clustering algorithms were also applied on the MDA output data set to examine the clustering 
tendency of the data.  The clustering algorithms used were: 1) Maximin-distance algorithm [10], and 2) K-
means algorithm [10]. The maximin-distance algorithm seeks clusters that are farthest apart. The algorithm 
is iterative and terminates when the distance of any feature to the cluster center is within a pre-defined 
threshold. The K-means algorithm identifies the cluster centers so that the sum of distance from a feature 
sample to its cluster center for all samples is minimized.  For the K-means algorithm, the number of 
clusters has to be specified; whereas the maximin-distance algorithm determines the number of clusters 
based on the data.    
 
All of the classification, feature selection and clustering algorithms used in this study are implemented as 
the component modules in the Algorithm Development and Mining System (ADaM) toolkit [11] developed 
by the Information Technology and System Center (ITSC), UAH.  The ADaM toolkit consists of a variety 
of data mining and image processing modules in addition to data preprocessing modules, and has been 
extensively used in the Earth and Space sciences research and applications [12], [13], [14]. 

 
 



4 Results and analyses 
 
4.1 UAH MDA performances 
 
Using the two cases, several aspects of NSSL MDA and UAH MDA outputs were compared. Comparisons 
between the two MDAs included the number of mesocyclone signatures identified, the spatial locations of 
the signatures, and feature distributions of the identified signatures. For the KOUN case, NSSL MDA 
identified 996 signatures, whereas the UAH MDA identified a total of 1097 signatures. For the KINX case, 
NSSL MDA identified 3862 signatures, while the UAH MDA identified 1876 signatures. With only two 
case studies it is difficult to draw general conclusions, but the UAH MDA identified significantly less 
mesocyclone signatures than the NSSL MDA for the KINX case. One reason for this is that UAH MDA 
does not identify “long-range 2D features”, that is, the 2D features detected at lowest elevation scan and 
located greater than 175 km from the radar, as NSSL MDA does [3]. The difference in 2D shear region 
detection between the two algorithms may also cause some differences in detected mesocyclones. Figs. 1a 
and 1b show the location distributions of the identified signatures from both of MDAs for KOUN and 
KINX, respectively. It can be seen that both algorithms have similar spatial coverage for the detected 
mesocyclone signatures. Figs. 2 and 3 show the distributions of the mesocyclone features from the two 
MDAs.  The distributions of features from the two algorithms are similar except for the mesocyclone depth.  
The correlations of feature distributions are higher than 0.80 for base height, mean diameter and mean 
shear, whereas the correlation for depth distribution is about 0.55. The relative low correlation for depth is 
mainly due to the distribution discrepancy at depth values smaller than 1.0. The histograms of depth feature 
peak at about 0.75 km for the NSSL features, which is mainly attributed by the “long-range 2D features”, 
while it is not true for the UAH depth features.  
 
The computational speed performance for the NSSL and UAH MDA’s were also examined. Note that 
neither MDA algorithm detected any mesocyclone signatures for clear air conditions.  Using a 400 MHz 
Pentium 2 PC with 256 MB memory, for a volume scan the UAH MDA mean processing times for the 
KOUN case and the KINX case were 1.02 sec/volume and 0.90 sec/volume, respectively. In contrast, for 
the NSSL MDA running on the same system, the mean processing times were 1.98 seconds and 1.86 
seconds, respectively.  Consequently, the UHA MDA ran roughly twice as fast as the NSSL MDA on a 
Pentium 2. 
 
4.2 Mesocyclone signature classifications 
 
Four metrics were used by NSSL to evaluate the performance of a classifier on mesocyclones in [3]. The 
four metrics are:  1) Probability of detection (POD), 2) False alarm rate (FAR), 3) Critical success index 
(CSI), and 4) Heidke skill score (HSS). Due to the heavy skewness of detected mesocyclone signatures 
towards the “false” class, NSSL determined the CSI is the proper measure in evaluating classifier 
performance [3].  
 
Tables 1 and 2 contain the CSI results from Bayes and SVM classifiers, for the KOUN and KINX cases, 
respectively, for the three feature selection methods. In these tables, the bitstring is a mask indicating the 
elimination (1) or selection (0) of a feature.  The first 20 bits in the bitstring correspond to the 20 features 
calculated by the UAH MDA. The last bit in the bitstring represents the class index, and it is always 
selected (0). From Table 1, it can be seen that six combinations of classifiers with feature selection methods 
produced similar CSI values.  The GA feature selection method gives a slightly better CSI result. This is 
also true for KINX case, as shown in Table 2. Also, the CSI value for KINX case is about 10% better than 
that for KOUN case. 
 
The CSI values ranged from 0.30 to 0.40, similar to the values in [3].  However, signatures used to train 
and test the neural network classifier in [3] were based on the actual tornado observations.   Using NSSL 
mesocyclone signatures with 8 features, the best CSI values for KOUN and KINX cases were 0.56 and 
0.61, respectively. One of the possible causes for the lower CSI values from the UAH MDA could be the 
propagation of error in the truth labeling process for UAH data sets.  The UAH MDA mesocyclone 



signature is labeled as either a true or false signature based on whether or not it matches with one of the 
NSSL signatures. 
 
From Tables 1 and 2, it is seen that although the CSI values for different feature selection methods are very 
close, the features optimized for the classifiers varied from method to method. Also, the total number of 
features selected varied for different classifiers, ranging from 10 to 13. The occurrence of a feature in the 
feature selection process was calculated and shown in Table 3. The maximum occurrence that a feature 
could be selected is 12.  Base height, base Vrot and maximum strength index features had the highest 
scores. The depth and height of maximum GTGVD also scored high.  Maximum Vrot also scored high but 
is highly correlated with Base Vrot.  Thus, the most important features to classify the true mesocyclones are 
the vertical description of the signatures (base height, depth and height of maximum GTGVD) and the 
strength of the rotation (strength index and maximum Vrot).  The secondary features include the maximum 
diameter and maximum reflectivity features.  Surprisingly, reflectivity did not have a big impact on 
classification accuracy.   
   
 
4.3 Mesocyclone clustering  
 
The Maximin-distance clustering algorithm was applied to the entire mesocyclone data sets for both the 
KOUN case and KINX case. Fifteen out of the twenty parameters that were used are: 1) base height, 2) 
depth, 3) base diameter, 4) base shear, 5) base Vrot, 6) base GTGVD, 7) mean diameter, 8) maximum 
diameter, 9) mean shear, 10) maximum shear, 11) maximum GTGVD, 12) height of maximum GTGVD, 
13) maximum Vrot, 14) mean strength, and 15) mean reflectivity.  The core depth, core base height, 
maximum strength index and maximum reflectivity parameters are highly correlated with depth, base 
height, mean strength index, and mean reflectivity parameters, respectively, and they were not used in 
clustering process to reduce information redundancy. The rotational parameter was not a key parameter for 
mesocyclones as shown in previous section, and was not included either.  The results are shown in Tables 4 
and 5 for KOUN case and KINX case, respectively. 
 
For the KOUN case, the maximin algorithm generates 23 clusters, of which 11 clusters have less than 1% 
of the total samples and are not placed into the table.  Of the 12 clusters in table 4, clusters 1, 14, 18, 19 
probably represent the true mesocyclones based on the large storm depth, low base height, large rotational 
velocity, high shear and high shear strength index. Also, the reflectivity values are high for these clusters. 
Clusters 10 and 13 most probably consist of false mesocyclones signatures due to the shallow depth of the 
storm, and small values of reflectivity.  Similarly, clusters 5, 9, 12 and 17 probably contain false 
mesocyclones signatures due to small strength index, small rotational velocity and small reflectivity values. 
Clusters 15 and 21 are ambiguous having large GTGVD, rotational velocity and large reflectivity values, 
but also have high storm bases.    
 
For the KINX case, the maximin algorithm generates 10 clusters, out of which 4 clusters have less than 1% 
of total samples and are not placed into the table.  Clusters 7, 8, 9 and 10 most probably represent true 
mesocyclones due to high strength index, large rotational velocity, deep storm depth, high GTGVD and 
high reflectivity except for cluster 10. Clusters 1 and 5 more likely represent the false mesocyclones 
signatures due to weak strength index, and small rotational velocity.  
 
The values in the last 4 columns in tables 4 and 5 are the number of samples, number of samples labeled as 
true (#1) and false (#0), and cluster index.  For the clusters containing false signatures that we interpreted 
based on the feature characteristics, most of the samples are labeled as false samples except clusters 9 and 
17 in the KOUN case and cluster 1 in the KINX case. In these three clusters, 15% to 25% of the samples 
are labeled as true samples. On the other hand, for mesocyclone clusters containing true signatures, a large 
percentage of the samples is labeled as false signatures.  The mesocyclone samples from NSSL MDA were 
also examined using the maximin clustering algorithm. For the NSSL samples, 7 features were available, 
including base height, depth, mean diameter and shear, maximum diameter and shear, and maximum 
rotational velocity.  Similar results were observed for both the KINX and KOUN cases.  The results from 
the maximin cluster algorithm suggest that the clustering tendency for true mesocyclones feature set is not 
consistent with expert labeling.  This explains the low CSI scores for the classifiers.  It may also suggest 



that additional features may be required to adequately characterize a mesocyclone so as to correctly classify 
the true mesocyclones.   
 
The K-means clustering algorithm was also applied on the mesocyclone samples. Table 6 has the results 
from the KINX case with k = 10.  In table 6, clusters 5, 6 and 9 are interpreted as true mesocyclone clusters 
due to their high strength index, high GTGVD, rotational velocity, low base height and deep storm depth. 
The rest of clusters are interpreted as false clusters due to one or many of the following reasons:, low 
strength index, low rotational velocity, shallow depth and high storm base.  The results from the K-means 
are similar to the ones from maximin clustering.  
 

5 Summary  
 
In this study, a mesocyclone detection algorithm (UAH MDA) for WSR-88D radar data was developed. 
The performance of this MDA was compared with the NSSL MDA for two cases. The spatial coverage and 
feature distribution of identified mesocyclones from the two MDAs for the two cases were very similar.     

The identified mesocyclone signatures for the two cases were then applied to two classifiers using 3 
different feature selection methods to reach the best classification performance. The best CSIs for the two 
cases are 0.30 and 0.40, respectively.  The classifier optimization using feature selection found that the 
most important features to classify the true mesocyclones are the vertical description of the signatures and 
the strength of the rotation.  Two clustering algorithms were also applied to the identified mesocyclone 
samples. The clustering results show no clear separation between true and false mesocyclone signatures.  
This ambiguity could be attributed to several different factors, such as incorrect labeling and the need for 
additional features.    
 
The UAH MDA running on a Pentium 2 PC requires about 1 second to process a full volume scan of radar 
data and is very fast compared to the six minutes required to create a volume scan.  In addition, the UAH 
MDA algorithm is about twice as fast as a variant of the full NSSL MDA (which was computationally 
optimized for this study). Both the NSSL and UAH algorithms appear to identify similar mesocyclone 
features and feature locations.  Although additional analysis is recommended to insure the UAH MDA is 
correctly identifying important mesocyclone signatures, it appears from this first study that the UAH MDA 
could be considered for use as a tool to mine the mesocyclones from large volumes of archived radar data.  
Clearly the National Climatic Data Center could benefit by such a tool.  The UAH Mesocyclone Detection 
Algorithm is available as a stand-alone application and can be easily used by individual researchers.  
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           Figure 1.  Spatial location distributions of the identified mesocyclone  
                                        signatures detected from NSSL MDA and UAH MDA, respectively.  

(a) KOUN case, (b) KINX case 
 
 

 
 



 
Figure 2.  Comparison of feature distributions of the mesocyclone  
signatures detected from NSSL MDA and UAH MDA for KOUN case 
 
 

 
   Figure 3.  Comparison of feature distributions of the mesocyclone  

signatures detected from NSSL MDA and UAH MDA for KINX case 
 
 
 
 
 
 
 
 
 
 



Table 1. The optimal CSI results of Bayes and SVM classifiers using three feature selection methods for 
the KOUN case    
   

Feature Reduction Classifier BitString CSI 
Backward Elimination Bayes 011110110000101000000 0.298578 
Backward Elimination SVM 000100000001000100010 0.307393 
Forward Selection Bayes 100001000000111000000 0.306604 
Forward Selection SVM 100000000000100000010 0.301527 
Genetic Algorithm Bayes 011001001000100101100 0.309278 
Genetic Algorithm SVM 010100111011100110010 0.313008 

 
 
Table 2. The optimal CSI results of Bayes and SVM classifiers using three feature selection methods for 
the KINX case 
   

Feature Reduction Classifier BitString CSI 
Backward Elimination Bayes 001001101011101111110 0.400000 
Backward Elimination SVM 000111011111110111010 0.392283 
Forward Selection Bayes 000001010011100101110 0.410072 
Forward Selection SVM 000111011101110100010 0.397394 
Genetic Algorithm Bayes 000011010111100101110 0.423488 
Genetic Algorithm SVM 000011011111110100110 0.403226 

 
 
Table 3. Frequency that features of mesocyclone signature are selected in feature selection process for the 
KINX and KOUN cases. There are a total of 12 feature selection occurrences for the two cases. 
 

Feature Name Occurrence Percentage (%) 
Base Height 10 83.3 
Base Vrot 10 83.3 
Maximum Strength Index 10 83.3 
Depth 9 75 
Height of Maximum GTGVD 9 75 
Maximum Vrot 9 75 
Core Base Height 8 66.7 
Core Depth 8 66.7 
Maximum Diameter 8 66.7 
Base Diameter 7 58.3 
Mean Diameter 7 58.3 
Mean Shear 7 58.3 
Base GTGVD 6 50 
Maximum Reflectivity 6 50 
Maximum Shear 5 41.7 
Mean Reflectivity 5 41.7 
Rotation 4 33.3 
Base Shear 3 25 
Mean Strength Index 3 25 
Maximum GTGVD 1 8.3 

  
 
 
 
 
 
 
 
 



 
 
Table 4 Results from maximin-distance clustering algorithm for the KOUN case  

 
 
 
 
Table 5 Results from maximin-distance clustering algorithm for the KINX case 

 
 
 
 
Table 6 Results from k-mean clustering algorithm for the KINX case, k = 10  
 

BsHt depth BsDm BsShr BsVrt bsGTG mnDm mxDm mnShr mxShr mxGTGHtGTG mxVrt mnStr mnRef num #1 #0 cls
0.6 6.9 1.9 16.8 14.5 26.7 4.1 6.9 10 20 29.4 1.5 17.1 3.8 36.6 16 4 12 1
5.7 5.2 5.5 3.6 8.8 13.2 6.2 7.5 3.6 4.4 16.2 8.8 11.5 2.4 28.8 59 1 58 5
0.9 6.6 7.9 2.8 10.1 14.2 8 10 3.1 4 16.9 4.2 12.5 2.5 39.4 194 28 166 9
0.5 1.3 2.2 10.5 9.8 12.1 2.1 2.6 10.5 13 13.9 1.2 11 2.4 4.5 188 2 186 10
5.3 6.3 13.4 1.8 11.4 13.3 12.5 15 2.2 2.8 15.7 8.8 14.7 2.5 35.4 17 1 16 12
0.1 1.5 2.8 11.9 13.6 17.4 2.3 3.1 14.9 20.9 25 1 17.7 4.2 5.4 25 2 23 13
0.6 8.6 2.5 18.7 21.9 41.8 4.7 7.3 10.9 19.6 44 2.4 23.4 6.3 45.3 30 13 17 14
5.6 5.6 5.6 6.3 14.9 21.2 6.3 7.8 5.7 7.3 23.7 7.9 16.5 4.4 40.9 64 14 50 15
2.5 5.1 3.2 6.7 9.5 14.7 3.7 4.9 6.8 9 17.9 5.2 12 2.6 37.4 222 41 181 17
0.4 11.2 9.1 2.6 11.1 15.6 8.5 11.4 4.1 6.2 25.9 8.6 20.2 4.5 41.9 15 0 15 18
0.8 7.6 5.1 7.1 15.5 25.1 6 8.2 5.7 8.2 27.5 2.7 18 4.1 42.2 117 41 76 19
5.1 6 8.1 3.5 13.2 16.4 8.1 10.1 3.9 5 19.9 8.7 16.4 3 39 117 24 93 21

bsHt depth BsDm BsShr BsVrt bsGTG mnDm mxDm mnShr mxShr mxGTGHtGTG mxVrt mnStr mnRef num #1 #0 cls
3.3 4.8 5.4 4.9 11 14.9 5.5 6.9 5 6.4 17.7 5.8 13.3 2.5 37.3 1037 201 836 1
0.6 1.2 2.1 11 9.9 12.7 2.1 2.7 10.8 13.5 14.5 1.2 11 2.4 7.7 571 5 566 5
3.4 6.1 2.3 21.4 21.9 41.6 3.9 6.5 13 22.5 42.7 4.6 22.6 5.2 40.1 20 9 11 7

1 7.9 6.6 6.3 16.8 24 7.1 9.6 5.7 8.2 28.7 4.2 21.1 3.9 41.5 135 80 55 8
1.3 6.5 3.8 7.2 12.5 17.9 3.1 4.5 11.6 20.7 32.6 4.9 18.5 4.4 43.6 25 3 22 9
0.7 3.2 3.3 12.4 17.7 26 3.5 4.4 10.3 13.2 27.4 1.7 18.6 4.6 22.5 47 7 40 10

bsHt depth bsDm bsShr bsVrt bsGTG mnDm mxDm mnShr mxShr mxGTG HtGTG mxVrt mnStr mnRef num #1 #0 cls
5.7 4.7 5.6 6 15.4 19.5 5.6 6.7 5.9 7.2 21.7 7.8 17.2 3.7 40.9 126 34 92 1
4.1 4.8 7.9 3.3 12.1 14.3 7.5 9.3 3.9 5 17.7 7 15.1 2.2 38.9 187 43 144 2

3 3.8 3.5 6.1 9.4 13 3.9 5.1 6 7.7 15.5 5.1 11.6 2.3 34.9 361 41 320 3
0.4 1.1 1.6 16.8 12.3 16.4 1.8 2.2 14.6 18.6 17.8 0.7 13.2 3.1 5.9 184 1 183 4
2.4 6.1 4.6 10.3 19.7 31.4 5.1 6.9 9.4 14 38.1 4.6 23.5 5.5 39.7 79 28 51 5
1.1 6.7 5.2 6 13.5 19.3 5.5 7.5 6.1 8.9 24.8 4 17.5 3.5 39.4 235 106 129 6
1.1 7 9.6 2.4 10.8 14 9 11.2 2.7 3.5 16.7 4.8 12.7 2.1 37.5 126 27 99 7
0.6 1.1 2.4 8.7 9.1 11.2 2.3 2.8 9.2 11.4 13 1.2 10.2 2.2 6.5 369 1 368 8
1.4 4.3 2.1 28.3 26.2 45.6 3.1 4.7 19.6 30.7 47.4 2.3 27.1 6.9 27.9 29 7 22 9
3.5 4.7 4.5 4.9 9.3 14.4 4.7 5.7 4.8 5.9 16.1 5.8 10.6 2.2 35.5 180 23 157 10


