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1. INTRODUCTION 

 
Perhaps the biggest potential gain from the use of 

distributed hydrologic models in flood forecasting is to 
increase the spatial resolution of forecasts.  Higher 
resolution hydrologic forecasts can provide information 
in flash flood situations; however, an important question 
to consider in evaluating higher resolution forecasts is 
whether or not larger simulation uncertainties at smaller 
scales will diminish the utility of these forecasts, and, if 
so, to what degree? 

 
The statistical-distributed modeling approach is 

proposed to simulate floods on small basins and 
account for hydrologic modeling uncertainty. This 
modeling approach should enhance our ability to predict 
the occurrence of flash flooding.  The approach offers 
an alternative to the current National Weather Service 
(NWS) Flash Flood Guidance (FFG) system and 
inherently addresses FFG limitations (discussed below).   

 
Two goals of this study are to:  
 
•  Define, develop, and evaluate a statistical-

distributed framework for predicting relative 
flood severity at flash flood scales (typically 
ungauged locations). 

 
•  In doing so, characterize hydrologic simulation 

uncertainties across a wide range of scales 
using operational quality radar-based 
precipitation data. 

 
Use of the Office of Hydrologic Development (OHD) 

Hydrology Laboratory Research Modeling System (HL-
RMS) (Koren et al., 2003) will facilitate this project.  HL-
RMS includes a grid-based, distributed hydrologic 
model designed to efficiently ingest NWS radar-based 
precipitation products.  The computational efficiency of 
the model and the well-defined procedures for getting 
initial, a priori  parameter estimates make this project 
feasible.   
 

This paper describes the basic scale issues being 
addressed, the proposed methodology, and initial basin 
selection.   

 
____________________________________________ 
*Corresponding author address:  Seann Reed, 
w/OHD12, 1325 East-West Highway, Silver Spring, MD 
20910; e-mail:  seann.reed@noaa.gov. 

 

A few example results are used in this paper to illustrate 
the approach.  More results will be presented at the 
conference in January.   
 
 
2. SCALE ISSUES 

 
Three limitations of the current FFG science are (1) 

the use of lumped rainfall-runoff models which don’t 
account for the spatial and temporal differences 
between RFC basin scales and flash flood scales, (2) 
misuse of threshold runoff as an area averaged property 
rather than a characteristic of a point along the channel, 
and (3) large uncertainties in defining threshold runoff at 
ungauged locations using the available empirical 
relationships.  The use of a distributed model inherently 
solves the first two problems.  Use of the statistical-
distributed modeling approach will address some of the 
uncertainty issues.   

 
Relative simulation errors from hydrologic models 

tend to increase with decreasing spatial scales.  
Numerous sensitivity studies have shown that models 
are sensitive to the spatial and temporal scales of the 
computations and to the resolution of rainfall inputs (e.g. 
Finnerty et al., 1997; Winchell et al., 1998; Koren et al., 
1999; to name a few); however, no study has 
systematically computed simulation errors relative to 
observed streamflow over the wide range of basin sizes 
in which we are interested.  Although independent 
studies in the literature report results for basin of various 
sizes, it is difficult to compare the accuracy of these 
published results due to differences in the statistics 
reported, the models used, the quality of input forcing, 
and the climate regime.   

 
HL-RMS simulation results from the Distributed 

Model Inter-comparison Project (DMIP) (Smith et al., 
2003; Reed et al., 2003) in Figure 1 show an increase in 
the percent peak error prediction for the three smallest 
basins in the study.  Other models in DMIP agreed with 
this trend. 

 
The trend of increased errors for smaller basins is a 

little stronger in the calibrated results when compared 
with uncalibrated results because there was no explicit 
calibration using observed data for the three smallest 
basins.  Even so, the scenario of calibrating large basins 
with limited calibration or no calibration at interior points 
is realistic when considering real-world data constraints.   
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Figure 1.  Percent error in simulated peaks from the HL-
RMS distributed model (averages for approximately 20 
events per basin) versus drainage area for the DMIP 
basins.   
 

Also in DMIP basins, Carpenter and Georgakakos 
(2003) compute uncertainty estimates across a wide 
range of scales (50 – 2000 km2) using Monte Carlo 
ensemble simulations.  Their theoretical results indicate 
a significant increase in uncertainty with decreasing 
scale; however, the accuracy of their results is difficult to 
confirm given the limited number of stream gauges at 
interior locations in this small region.   

 
In this study we hope to broaden our knowledge of 

simulation uncertainties at small scales by running 
simulations on many gauged basins of various sizes.  
Flash floods typically occur in basins smaller than 300 
km2 with times of concentration less than 12 hours.  
RFCs typically calibrate river forecasting models for 
basins ranging in size from 300 km2 up to 5000 km2.  
Although the target application for the proposed 
methodology is small basins, some large basins will be 
analyzed to contrast results obtained at different scales.   

 
3. METHODOLOGY 

 
3.1. The Statistical-Distributed Approach 

 
The statistical-distributed approach requires running 

a distributed model using archived radar-rainfall grids to 
derive flood probability characteristics of simulated flows 
for all cells in the distributed model.  When subsequently 
running the distributed model in forecast mode, the 
flooding flow threshold for each grid cell is defined in 
terms of a flood probability level rather than an absolute 
value of flow.  In this manner, the flooding flow 
computed from simulated data is different than that 
computed from observed data because it takes into 
account the hydrologic model uncertainty.   

 
Implementing this approach in the distributed 

modeling framework provides a consistent, physical 
basis for predicting floods at ungauged locations.  A 

difficulty that still remains is how to define the probability 
associated with flooding flow (discussed more in the 
next section). 

 
The effectiveness of a statistical-distributed 

approach compared to a distributed approach can be 
assessed at locations with observed data.  For example, 
Figure 2 shows a plot of the joint probability distribution 
of simulated and observed peaks for the 34 largest flood 
events occurring at USGS gauge 07194800 (Illinois 
River at Savoy, OK; drainage area is 433 km2) between 
January 1, 1999, and July 1, 2000.  The simulations are 
from the HL-RMS distributed model.   

 
For illustration purposes only, the flooding flow is set 

to 178 cms, which corresponds to a non-exceedance 
probability of 0.71 based on the observed events in this 
example.  The solid vertical line in Figure 2 is drawn at 
the corresponding non-exceedance probability level on 
the simulation axis.  The dashed vertical line is drawn at 
the non-exceedance probability corresponding to a flow 
of 178 cms based on simulated events (0.8).  The 
difference between the dashed and solid vertical lines 
represents the model error.   

 
Using the statistical-distributed approach, the solid 

vertical line is used as the flood threshold, yielding 
forecast hits in areas B and C, forecast misses in area A 
and forecast false alarms in areas E and F.  A 
distributed modeling approach would use the dashed 
line as the flood threshold, yielding hits in area C, 
misses in areas A and B, and false alarms in area F.  
For the events in this example, the statistical-distributed 
approach would have yielded 7 hits, 3 misses, and 3 
false alarms and a distributed approach would have 
yielded 5 hits, 5 misses, and 2 false alarms.  This 
example is meant only for illustration purposes, and the 
results from Figure 2 are much too limited to make 
general conclusions about the effectiveness of the 
approach.   
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Figure 2.  Joint probability pairs of simulated and 
observed peaks for 34 storm events at the Savoy, OK 
stream gauge.1 
 
3.2. The Flooding Flow Problem 
 

There are two levels of difficulty in defining the 
flooding flow.  The first is to distinguish between a 
hydraulic definition of flooding flow such as bankfull and 
a more pragmatic definition such as a damage level.  In 
some localities, warning at the bankfull level would be 
too conservative (e.g. low water crossings and canyons) 
while in other localities an overbank flood may cause 
minimal risk and no damage.  To be practical, initial 
evaluations of the proposed approach will use the 
bankfull definition. 

 
A second difficulty is that there is a lot of uncertainty 

in defining bankfull flow.  Although measurements for 
some locations are available in the literature, no 
comprehensive and consistently measured database of 
bankfull flow estimates is available for small streams in 
the United States.  Although empirical evidence 
suggests that bankfull floods often occur with a return 
period of between 1 and 2 years, there is a lot of scatter 
in these data and variation from one location to the next.  
Recent work by Dr. Boyko Dodov, University of 
Minnesota (personal communication), suggests that part 
of this variation in fluvial channels may be explained by 
defining the frequency associated with flooding as a 
function of drainage area.  For this study, we can define 
a simple strategy for estimating bankfull flow as a 
function of scale and evaluate the performance of the 
statistical-distributed approach when this strategy is 
used.   

 
3.3. Data Sets and Basin Selection 

 
The required data sets for the proposed analysis 

include an archive of multi-sensor precipitation grids, 

peak flow measurement data from the USGS and 
provisional instantaneous flow data (sometimes referred 
to as “unit” data by the USGS) where available, and 
mean daily flow data.  Initial analysis will be done in 
ABRFC and WGRFC.  ABRFC has the longest archive 
of multi-sensor precipitation products in the country, 
starting in June, 1993, and WGRFC also has a 
reasonably long archive, starting in January, 1996.  
Snow effects are expected to be minimal in the basins 
selected.  Another reason for starting with these areas is 
that much complementary research for basins in these 
RFCs is ongoing at OHD.  

 
Given the nature of the multi-sensor radar-rainfall 

archives currently available (hourly, 4 km), the initial 
phase of this study will target basins in the 130 – 1500 
km2 size range.  A 130 km2 basin is approximately the 
smallest that can be reasonably represented by a 4 km 
cell-to-cell network (Reed, 2003).  The tools to complete 
the first phase of this study are in hand.  Results from 
the first phase will help guide future studies on basins 
smaller than 130 km2.  Although additional data 
processing to develop higher resolution models (e.g. 1 
or 2 km) will be required to evaluate results on smaller 
basins, no substantial changes will be required to the 
basic HL-RMS algorithms.   

 
A basin screening process has begun.  Basins are 

selected such that the USGS peak flow data are 
available for the same time period covered by the multi-
sensor precipitation archive.  A second criterion is that 
peak flows should not be affected by factors not 
accounted for in the current modeling system (e.g. 
regulation and diversion).  Data flags in the USGS peak 
flow data are used to screen out basins with these 
currently unmodeled characteristics.  For WGRFC, 
additional manual screening is used to eliminate basins 
where it is known or suspected that significant inter-
basin transfers through karst groundwater aquifers may 
occur.  Table 1 lists the number of basins remaining 
after various steps in the basin screening process for 
ABRFC and WGRFC.   
 



 

Table 1.  Number of stations remaining after various 
stages in the basin screening process.   
 
 No. of Stations 

Remaining 
Criteria ABRFC WGRFC 
Station record overlaps 
with radar data 

407 537 

No undesirable peak 
qualification codes 

168 257 

No missing annual peak 
data in the expected 
analysis period 

80 100 

For Phase 1: Basins 
ranging in size from 130 – 
1500 km2 

38 69 

At least one fairly 
substantial event occurs 
during the planned 
validation period (2001 - 
2002) 

9 34* 

* Will be reduced based on additional manual screening.   
 

3.4. Validation Strategy 
 

The availability of a priori parameter estimation 
techniques for HL-RMS will facilitate rapid testing on 
many basins.  Initial evaluations of the approach will be 
primarily using uncalibrated model parameters.  This 
blind testing is intended to evaluate how effective the 
approach can be in ungauged locations.  The testing 
strategy will include the following general steps: 
 
(1) Specify an exceedance probability associated with 

flooding at each model cell (perhaps initially as a 
simple function of drainage area). 

 
(2) Simulate floods for a period up through 2000 

(reserving data from 2001 and 2002 for validation) 
and estimate the flow associated with the flooding 
exceedence probability defined in step 1.   

 
(3) Using the available observed data, determine the 

number of hits, misses, and false alarms that would 
occur if predicting floods during the validation 
period for both the statistical-distributed approach 
and a distributed approach.   

 
(4) Devise a method to compare these predictions with 

what would have been predicted using archived 
FFG data.   

 
We don’t know for sure how long a period of record 

will be required to demonstrate the utility of the 
approach.  Since the system is primarily intended to 
predict floods that may occur every few years rather 
than extreme floods, the method may yield success 
without requiring a long archive of data.   

 
It will also be important to quantify the water balance 

for the basins modeled to ensure that the results are 

reasonable, especially given that uncalibrated 
parameters will be used for initial simulations.  Limited 
initial simulations using uncalibrated parameters in the 
ABRFC and WGRFC areas have been promising. 

 
3.5. Variations 

 
Research to improve the HL-RMS model and the 

available input forcing data is ongoing.  Several 
developments expected in the next year can and should 
be evaluated for the basins identified for this project.  
For example,  

 
(1) What benefits can a re-analysis of the multi-sensor 

precipitation archives offer? 
 
(2) What difference can refined a priori parameters 

using more detailed GIS data sources make (for 
both rainfall-runoff and hillslope/channel routing)?  

 
(3) Without resorting to a full calibration effort, what 

difference can simple parameter adjustments to 
improve the overall water balance make?  

 
4. SUMMARY 
 

The goal of the statistical-distributed modeling 
method is to quantify uncertainties in our ability to 
forecast flash floods given currently available 
precipitation data and currently available continuous, 
distributed modeling software (HL-RMS).  Use of a 
distributed model addresses scale issues.  The 
‘statistical’ part of the approach accounts for the 
increased uncertainties expected at smaller scales and 
ungauged locations where calibration is not possible.  
While the statistical-distributed approach cannot, by 
itself, answer the question of what flood probability level 
represents a risk, the approach is expected to provide 
more spatially explicit and physically consistent 
estimates of relative flood severity compared to what is 
currently provided by FFG. 

 
Using parameter estimation techniques developed 

for HL-RMS, the proposed approach can be evaluated 
on a relatively large number of basins.  An initial set of 
basins in WGRFC and ABRFC have been identified for 
analysis.  Although not available for this preprint, results 
for several of these basins will be presented at the 
conference.    
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