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1.     INTRODUCTION 
 
     Mesoscale verification has become increasingly 
important in recent years, as computer power and 
numerical model resolution have increased.  The term 
“mesoscale” is used rather loosely here, as verification 
methods are not necessarily associated with a particular 
scale.  Higher grid resolutions produce increasingly 
complex and deterministic predictions where the details are 
explicitly provided.  Thus, event-based standards such as 
those of Ebert and McBride (2000), Baldwin et. al (2001), 
and Nachamkin (2002, 2003) are important measures of 
model performance.   
 
     In this paper, composite methods introduced by 
Nachamkin (2002, 2003) are used to verify heavy 
precipitation events.  Objective statistics are derived by 
collecting focused samples based on the existence of events 
in the forecasts and the observations.  Though originally 
designed for event verification in areas with sparse 
observations, composite methods also work well when 
observations are more readily available.   
 
     Composite methods differ from the more direct object-
oriented methods in that deterministic traits are not 
measured from each forecast-observation pair.  Instead, the 
statistics are taken from the collective conditional 
distributions contingent on the existence of an event in 
either the observations or the forecasts.  In this regard, 
verification becomes a data-mining problem.  Organized 
collection strategies provide data structures that allow for 
complex diagnoses using relatively simple tools.  For 
Instance, differences between the conditional biases from 
the observed and predicted events provide information 
regarding the contribution of false alarms and missed 
forecasts.  The scale of the forecast error can also be 
estimated by varying the size of the sample.  These 
statistics are demonstrated herein on operational forecasts 
from the Coupled Ocean/Atmosphere Mesoscale Prediction 
System (COAMPS™)1 (Hodur, 1997) over the Continental 
US (CONUS) during the 2003 convective season. 
 
2.     MODEL AND OBSERVATIONAL DATA 
 
     The operational forecasts were generated at the Fleet 
Numerical Oceanography and Meteorology Center 
(FNMOC).   Forecasts  of 24-hr  accumulated precipitation,  
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contingent on an observed event.  Heavy rain events were 
defined as contiguous precipitation areas anywhere over the 
CONUS containing 24-hr rain amounts of 25 mm (~ 1 
inch) or greater.  To ensure the events were well resolved 
by the model, only those events containing 50-500 grid 
points were selected.  In practice, most events contained 
less than 300 grid points.   
 
     Once an event was identified in the forecasts 
(observations), all surrounding data were transferred to a 
31X31 point relative grid with the same grid spacing as the 
model.  The center of the event as defined by its area-
weighted “center of mass” (Fig. 1) was positioned at the 
center of the relative grid.  At that point, all available 
observational (forecast) data were also positioned on the 
relative grid.  Model data were templated by the available 
observations, such that all forecasts outside of the 
contiguous coverage of the RFC analysis were cut from the 
set.  

     Ebert and McBride (2000) noted that the existence of 
boundaries within the data lead to errors in determining 
event-related quantities.  The conditional distributions 
contingent on the forecast events are unaffected by this 
because the relative grid position is determined by the 
forecasts alone.  However, the observation-based conditional 
distributions will be affected since partially observed events 
lead to errors in the location of the event center.  These 
errors effectively increase the observational variance 
because the observed events are not all directly 
superimposed.  In the data-mining sense, the data structures 
are less coherent and features like systematic phase errors 
are less apparent.  Ebert and McBride (2000) noted that the 
phase error, and thus event position, was among the least 
sensitive parameters to the data boundary errors.  In a 
Monte-Carlo experiment, they noted standard displacement 
errors on the order of two grid points or less for most events.
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Fig. 2.  Number frequency of 24-hour rainfall accumulations greater than or equal to 25 mm in a) the 24-hour forecasts 
and b) the RFC precipitation analyses.  Statistics were collected from 15 April through 7 September 2003.  Coverage of 
the predicted events was templated against the observation coverage. 
 



 
 
4.     RESULTS 
 
     The 24-hour event occurrence frequencies on the native 
27 km model grid, templated by the available observations, 
are depicted in Figure 2.  These represent the number of 
days with 24-hour accumulations of 25 mm or greater in a 
given place over the entire convective season.  Most of the 
observed events occurred east of the Rocky Mountains with 
local maxima in North Carolina and Florida.  The number 
of forecast events (Fig. 2a) was lower in almost all areas, 
most notably Florida where almost no events were 
predicted.  Low biases at high precipitation amounts are a 
common problem in most mesoscale models.  The 
convective forcing mechanisms, such as the sea breeze, are 
not well resolved by the 27 km model grid.   
 
     The precipitation distributions on the relative grid (Fig. 
3) indicate the model possessed some skill, especially when 
an event was predicted.  The conditional distributions of the 
observations and forecasts, contingent on an event in the 
forecasts (Fig. 3a), were similar in structure.  Both the 
observations and the forecasts displayed consolidated 
maxima of 40 and 50 mm, respectively.  The forecast 
precipitation fields were systematically phase shifted by 
about 3 grid points to the north and west of the 
observations.  For the cases contingent on an observed 
event (Fig. 3b), the bias was strongly negative, indicating 
many events in which not enough precipitation was 
predicted.  The forecast distribution was diluted by the 
missed forecasts.  Despite this, some evidence of the phase 
shift was apparent as the maximum average forecast 
rainfall amounts (~ 18 mm) was shifted about 2 grid points 
north and west of the observed maximum. 
 
     The event occurrences can be further parsed by 
investigating the number distributions of the event-scale 
precipitation statistics (Fig. 4).  Here the forecast-
observation pairs in each conditional distribution were 
sorted by the ratio of the grid-average forecast precipitation 
to that of the observations (F/O) taken over the relative 
grid.  These statistics indicate that majority of the forecasts 
in the forecast-based contingency sample (blue line in Fig. 
4) were within 25% of the observations on the area of the  
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Fig. 3.   Average precipitation amounts (mm) on the 
relative grid.  Model precipitation from the 27 km grid 
is shaded while observed values are contoured.  The 
distribution contingent on the existence of an event in 
the forecasts is displayed in a), and the distribution 
contingent on the observed events is displayed in b). 

 
relative grid.  However the tails of the distribution did 
contain false alarms and even some missed forecasts.  The 
observation-based contingency samples (red line) contained 
almost no false alarms, and the peak was shifted towards 
the lower ratios.  However, many of these forecasts did 
contain some precipitation.  Isolating systematic traits of 
this distribution of forecasts would be of considerable aid 
to diagnosing the under-prediction problem.  The 
composite method is well posed for this because any field 
can be collected and averaged on the relative grid.  This 
reiterates the connection between verification and data 
mining. 
 
5.     ERROR QUANTIFICATION 
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     Objectively quantifying the effects of phase errors is 
perhaps the most elusive aspect of mesoscale verification.  
As the forecasts become more detailed, small differences in  



position or timing result in major penalties in the objective 
statistics.  Much of this problem arises from the way the 
statistics are collected.  The equitable threat score (ETS) is 
based on dichotomous point-wise samples.  No 
consideration is given to the surrounding points, and thus 
no consideration is given to the scale of hits and misses.  
The result is an extremely sensitive parameter where the 
error is rapidly saturated by even the smallest deviations.   
 
     Alternately, the bias presents the opposite problem.  
Biases are often calculated over the entire native model 
grid, and all information regarding scale or location is lost 
in the averaging process.  However, this problem can be 
alleviated by sorting the samples before any of the statistics 
are calculated.  Focusing the samples limits the degrees of 
freedom within the data, paving the way for consistent, 
objective statistics.  The conditional composites are useful 
in this regard in that an event of a given type and scale is 
known to exist near grid center.  Statistics taken at varying 
scales on the relative grid reveal information regarding the 
nature and scale of the errors.   
 
     These concepts are demonstrated in Figure 5a, which 
shows 24-hour relative grid bias for both conditional 
composites calculated at successive cocentric squares 
centered at grid center.  The bias scores for the smallest 
areas are quite large, in part because of small area.  They 
are taken at the center of the events where precipitation 
rates and their associated gradients are large. Small 
displacement errors lead to large differences in the statistics 
at this scale.  The errors are more systematic in the 
observation-based composite, but statistics taken at this 
point alone are oblivious to this.  As the sample scale 
increases the biases trend closer to zero, with the forecast-
based biases actually reaching zero as the box size reaches 
15X15 grid points.  The conditional distributions in Figure 
3a indicate that an area of this size encompasses the 
average phase error.  This means that when the model 
predicts a rain event at 24-hours, forecasts for that amount 
of rain spread over a 15X15 grid point area will on average 
be well calibrated.   
 
     Of course this is only half of the story because the 
distribution of the forecasts given the observations has yet 
to be considered.  The biases there never cross the zero line 
due to the under-prediction problem.  The decreasing 
magnitude of the bias with increasing scale graphically 
illustrates the decreasing sensitivity of the bias at larger 
scales.  Figure 3b shows that forecasts issued on the full 
31X31 point relative grid will not be much better than those 
issued at smaller scales.  The bias simply decreases away 
from the event center as the magnitude of the average 
rainfall decreases.  This behavior becomes apparent in the 
grid integrated rainfall errors (Fig. 5b).  Here, the forecast-
based errors still cross the zero line at the 15X15 point 
scale, but the observation-based errors steadily accumulate.  
This indicates that both the bias and the accumulated error 
should be examined when evaluating event displacement 
on the relative grid.  These measures taken together 
represent useful tools for objectively characterizing the 
error.   
 

 

 
 

Fig. 5.  Grid-total statistics are plotted as a function of 
relative grid size for the 24-hr forecasts.  Statistics from 
the forecast-contingent distributions are blue while the 
observation-contingent statistics are red. The black 
lines represent the difference between the two statistics.  
In a) relative grid biases are plotted while in b) the 
integrated F-O differences are plotted (both in mm). 

 
6.     CONCLUSIONS 

 
     Taken together, these statistics presented here can be 
used to objectively and subjectively describe the prediction 
of discrete events by a numerical model.  The end result is 
a set of verification statistics that is consistent with the 
kinds of forecasts that are currently issued in many 
circumstances.  Although the model output is becoming 
increasingly detailed, operational forecasts will likely 
remain probabilistic.  To be useful, verification should 
communicate the optimal conditions where event-oriented 
forecasts have a high probability of being correct.  At the 
same time a verification package should allow for the 
simple investigation of the forecasts that went bad.  
Systematic traits of the poor forecasts can be collected with 
the goal of informing the user of impending error and 
ultimately improving the forecasts themselves.  In that 
regard verification and statistical post-processing are 
intertwined. 
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