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1 INTRODUCTION

Rational decision making by industries, agencies,
and the public in anticipation of heavy precipitation,
snow storm, flood, or other disruptive weather phe-
nomenon, requires information about the degree of
confidence that the user can place in a weather fore-
cast. It is vital, therefore, to advance the meteorol-
ogist’s capability of quantifying forecast uncertainty
to meet the society’s rising expectations for reliable
information.

The long-term goal of our research is to lay
down a methodological foundation for the next gen-
eration of probabilistic forecasting systems. The
specific objective is to develop and test a coherent
set of theoretically-based techniques for probabilis-
tic forecasting of weather variates. The basic tech-
nique, called Bayesian Processor of Output (BPO),
will process output from a numerical weather predic-
tion (NWP) model and optimally fuse it with climatic
data in order to quantify uncertainty about a pre-
dictand. The extended technique, called Bayesian
Processor of Ensemble (BPE), will process an ensem-
ble of the NWP model output (or multiple model out-
puts).

As is well known, Bayes theorem provides the
optimal theoretical framework for fusing information
from different sources and for obtaining the proba-
bility distribution of a predictand, conditional on a
realization of predictors, or conditional on an ensem-
ble of realizations. The challenge is to develop and
test techniques suitable for operational forecasting.
This paper provides an overview of the research plan,
the Bayesian theory of forecasting, the development
strategy, and the testing strategy.
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2 RESEARCH PLAN

The research will cycle through two phases: the
development phase and the testing phase.

2.1 Development Phase

The goal is to develop the BPO (and the BPE)
that has a solid theoretical foundation, is suited to
all types of predictands, is amenable to supervised-
automatic estimation, and is computationally effi-
cient. The development will proceed in three stages.

1. The theoretic structures of the BPO will
be derived from the laws of probability theory. In
particular, the principles of Bayesian forecasting and
fusion will be followed (Krzysztofowicz, 1983, 1999;
Krzysztofowicz and Long, 1990). There will be three
structures, for

• binary predictands (e.g., indicator of precipi-
tation occurrence),

• multi-category predictands (e.g., indicator of
precipitation type),

• continuous predictands (e.g., precipitation
amount conditional on precipitation occurrence, tem-
perature, visibility, ceiling height, wind speed).

2. Within each theoretic structure, paramet-
ric models for the needed multivariate and condi-
tional probability distributions will be developed.
These developments will be based on the meta-
Gaussian family of multivariate distributions (Kelly
and Krzysztofowicz, 1994, 1995, 1997), which allows
for (i) any form of marginal distributions of predictors
and predictand, (ii) a stochastic dependence struc-
ture that is pairwise and that for each pair of variates
may be nonlinear (in the conditional mean) and het-
eroscedastic (in the conditional variance), and (iii) an
analytic forecasting equation for the probability dis-
tribution of the predictand.

3. Given the parametric models, procedures for
parameter estimation, model validation, and predic-
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tors selection will be designed.

2.2 Testing Phase

The BPO will be tested by producing probability
of precipitation (PoP) occurrence, probabilistic quan-
titative precipitation forecast (PQPF), and quanti-
tative precipitation forecast (QPF) derived from the
PQPF. The primary benchmark for evaluation of the
BPO will be the Model Output Statistics (MOS) tech-
nique (Glahn and Lowry, 1972) used in operational
forecasting by the National Weather Service (NWS).
In the currently deployed AVN-MOS system (Antolik,
2000), the predictors for the MOS forecasting equa-
tions are based on output fields from the Global Spec-
tral Model run under the code name AVN. The sam-
ples for the estimation and verification of the BPO
will be retrieved from the same archive that the Me-
teorological Development Laboratory of the NWS uti-
lized to develop the AVN-MOS system.

A comparative verification of the BPO forecasts
and the MOS forecasts will be conducted in three
stages. To wit, the implementation of the BPO will
progressively diverge from the implementation of the
MOS technique in order to evaluate both the mag-
nitude and the source of the expected improvement
of forecasts. There will be three sources (stages) of
improvement:

• Improvement due to the theoretic structure of
the BPO.

• Improvement due to the use of all climatic
data and the optimal fusion of information according
to Bayes theorem.

• Improvement due to the optimal selection of
predictors according to a criterion of informativeness
(or sufficiency, in the sense of Blackwell (1951)).

3 BAYESIAN THEORY
The theoretic structure of the BPO is outlined

below for two types of predictands, binary and con-
tinuous. Both types of predictands are involved in
the production of a PQPF.

3.1 Binary Predictand

3.1.1 Variates and Samples

Let V be the predictand, a binary indicator of
some future event, such that V = 1 if and only if the
event occurs, and V = 0 otherwise; its realization is
denoted v, where v ∈ {0, 1}. Let X = (X1, ...,XI) be
the vector of I predictors; its realization is denoted
x = (x1, ..., xI). Each Xi (i = 1, ..., I) is assumed to

be a continuous variate – an assumption that simpli-
fies the presentation but can be relaxed if necessary.

Suppose the forecasting problem has already
been structured, and the task is to develop the fore-
casting equation in a setup similar to that of the MOS
technique (Antolik, 2000). For example, let the event
be the occurrence of precipitation (practically, the ac-
cumulation of at least 0.254 mm of water) at a station
during the 12-h period beginning 12 h after the run of
the NWP model, at 0000 UTC, in August. Let {v}
denote the climatic sample of the predictand. Say,
a homogeneous record of precipitation observations
over 10 years exists, so that one can extract a sample
of size J1 = 10 years × 31 days = 310 realizations.
Let {(x, v)} denote the sample of joint realizations of
the predictor vector and the predictand. Say, a ho-
mogeneous record of the NWP model output over the
last 4 years exists, so that one can form a sample of
size J2 = 4 years × 31 days = 124 joint realizations.

The point of the above example is that typically
the joint sample is much shorter than the climatic
sample: J2 << J1. Classical statistical methods,
such as the MOS technique, deal with this sample
asymmetry by simply ignoring the long climatic sam-
ple. In effect, these methods throw away vast amount
of information about the predictand. In contrast,
the BPO will use effectively both samples; it will ex-
tract information from each sample and then opti-
mally fuse information according to the laws of prob-
ability. (Pooling of samples from different months
and stations in order to increase the sample size is a
separate issue.)

3.1.2 Inputs

With P denoting the probability and p denot-
ing a generic density function, define the following
objects.

g = P (V = 1) is the prior probability of event V
= 1; it is to be estimated from the climatic sample
{v}. Probability g quantifies the uncertainty about
the predictand V that exists before the NWP model
output is available. Equivalently, it characterizes the
natural variability of the predictand.

fv(x) = p(x|V = v) for v = 0, 1; function fv
is the I-variate density function of the predictor vec-
tor X, conditional on the hypothesis that the event
is V = v. The two conditional density functions,
f0 and f1, are to be estimated from the joint sample
{(x, v)}. For a fixed realization X = x, object fv(x)
is the likelihood of event V = v. Thus (f0, f1) com-
prises the family of likelihood functions. This family
quantifies the stochastic dependence between the pre-
dictor vector X and the predictand V . Equivalently,
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it characterizes the informativeness of the predictors
with respect to the predictand.

3.1.3 Theoretic Structure

The probability g and the family of likelihood
functions (f0, f1) carry information about the prior
uncertainty and the informativeness of the predictors
into the Bayesian revision procedure. The predictive
density function κ of the predictor vector X is given
by the total probability law:

κ(x) = f0(x)(1− g) + f1(x)g, (1)

and the posterior probability π = P (V = 1|X = x)
of event V = 1, conditional on a realization of the
predictor vector X = x, is given by Bayes theorem:

π =
f1(x)g

κ(x)
. (2)

By inserting (1) into (2), one obtains an alternative
expression:

π =

·
1 +

1− g

g

f0(x)

f1(x)

¸−1
, (3)

where (1−g)/g is the prior odds against event V = 1,
and f0(x)/f1(x) is the likelihood ratio against event
V = 1. Equation (3) defines the theoretic structure
of the BPO for a binary predictand.

3.2 Multi-Category Predictand

The BPO for a multi-category predictand will be
a generalization of the BPO for a binary predictand.
It will be tested for forecasts of the precipitation type
that are of import to the transportation industry dur-
ing the winter but that are currently rather poor for
some regions (e.g., east of the Blue Ridge Mountains
in Virginia).

3.3 Continuous Predictand

3.3.1 Variates and Samples

Let W be the predictand, which is a continuous
variate; its realization is denoted ω. Let X be the
vector of I continuous predictors; its realization is
denoted x.

As before, suppose the forecasting problem has
already been structured, and the task is to develop
the forecasting equation. Let {ω} denote the climatic
sample of the predictand, and let {(x, ω)} denote the
sample of joint realizations of the predictor vector and
the predictand.

3.3.2 Inputs

g(ω) = p(ω) is the prior density function of the
predictand W ; it is to be estimated from the climatic
sample {ω}. The corresponding distribution function
is denoted G.

f(x|ω) = p(x|W = ω); function f(·|ω) is the
I-variate density function of the predictor vector X,
conditional on the hypothesis that the actual value of
the predictand is W = ω. The family {f(·|ω) : all
ω} of the density functions of X is to be estimated
from the joint sample {(x, ω)}. For a fixed realiza-
tion X = x, object f(x|·) is the likelihood function
of W . Symbol f will denote the family of likelihood
functions.

3.3.3 Theoretic Structure

The density function g and the family of likeli-
hood functions f carry information about the prior
uncertainty and the informativeness of the predictors
into the Bayesian revision procedure. The predictive
density function κ of the predictor vector X is given
by the total probability law:

κ(x) =

Z ∞
−∞

f(x|ω)g(ω) dω, (4)

and the posterior density function φ(ω) = p(ω|X =
x) of predictandW , conditional on a realization of the
predictor vector X = x, is given by Bayes theorem:

φ(ω) =
f(x|ω)g(ω)

κ(x)
. (5)

The corresponding posterior distribution function
Φ(ω) = P (W ≤ ω|X = x) is given by

Φ(ω) =
1

κ(x)

Z ω

−∞
f(x|u)g(u) du. (6)

Equations (4)—(6) define the theoretic structure of the
BPO for a continuous predictand.

4 DEVELOPMENT

4.1 Modeling Issues

To operationalize a BPO, it is necessary to for-
mulate a model for the family of likelihood functions
and to derive a method (analytic and/or numerical)
for the effective calculation of the posterior probabil-
ity π or the posterior distribution function Φ. With
regard to modeling, there are two key issues.

First, among the most informative predictors of
precipitation occurrence and precipitation amount is
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an estimate of the total precipitation amount out-
put from the NWP model. Typically, this estimate
takes on value zero on some days, and positive val-
ues on other days. Thus it should be modeled as a
binary-continuous variate. This adds complexity to
the structure of the conditional density functions, fv
for v = 0, 1 , and f(·|ω) for all w, because each of
them becomes a two-component mixture.

Second, a flexible and convenient model is needed
for the multivariate conditional density functions of
the (absolutely) continuous predictor vectors. For
that purpose we employ the meta-Gaussian model
developed by Kelly and Krzysztofowicz (1994, 1995,
1997) and applied successfully to probabilistic river
stage forecasting (Krzysztofowicz and Herr, 2001;
Krzysztofowicz, 2002).

4.2 Meta-Gaussian Model

The meta-Gaussian model belongs to the class
of multivariate distributions constructed from mar-
ginals. It offers these properties.

1. The marginal conditional distribution func-
tion of each predictor Xi can take any form; it can
be parametric or nonparametric.

2. The transform for each predictor Xi is
uniquely specified once its marginal distribution func-
tion has been estimated.

3. The conditional dependence structure among
the predictors X1, ...,XI is pairwise; the degree of de-
pendence is quantified by the conditional correlation
matrix.

4. The conditional dependence structure be-
tween any two predictors Xi and Xj , i 6= j, can be
nonlinear and heteroscedastic.

5. The probabilistic forecast (the posterior prob-
ability π, the posterior density function φ, or the pos-
terior distribution function Φ) is specified by an ana-
lytic expression.

Properties 1 and 4 imply the flexibility in fit-
ting the model to data. Properties 2 and 3 imply
the simplicity of estimation. Property 5 implies the
computational efficiency – an important attribute
for operational forecasting.

5 TESTING

5.1 PQPF Production

Comprehensive testing and evaluation will be
performed of the BPO for two kinds of forecasts: PoP
(binary predictand) and PQPF (binary-continuous
predictand).

The PoP will be produced from (3). The
PQPF that meets requirements of hydrological mod-
els (Krzysztofowicz, 2002) will be produced from (3)
and (6) as follows. With W defined as the precipi-
tation amount accumulated at a station (or at a grid
point) during a specified period, (3) will produce a
probability

π = P (W > 0|X = x), (7)

and (6) will produce a conditional distribution func-
tion

Φ(ω) = P (W ≤ w|X = x,W > 0), w ≥ 0, (8)

such that Φ(ω) > 0 if w > 0, and Φ(ω) = 0 if w =
0. Then the PQPF will be specified in terms of the
(unconditional) distribution function of W :

P (W ≤ w|X = x) = πΦ(ω) + (1− π), w ≥ 0. (9)

This distribution function will be continuous because
Φ will be continuous.

The evaluation will include a comparative verifi-
cation of the BPO forecasts and the MOS forecasts.
Two basic questions will be asked during the evalua-
tion: (i) Does the BPO produce better probabilistic
forecasts than the MOS technique does? (ii) Does
the BPO overcome the statistical deficiencies and the
operational limitations of the MOS technique?

5.2 Verification Measures

Verification of forecasts will be performed ac-
cording to the Bayesian decision theory. This theory
prescribes two verification measures: a measure of
calibration and a measure of informativeness (DeG-
root and Fienberg, 1982, 1983; Vardeman and Mee-
den, 1983; Krzysztofowicz, 1996). These verification
measures characterize the necessary and sufficient at-
tributes of forecast from the viewpoint of a rational
decision maker. Both measures are based on the
family of likelihood functions which characterizes the
stochastic dependence between the forecast and the
predictand, and which must be estimated from a joint
sample of realizations.

For the PoP, the primary verification measures
will be the calibration function (Krzysztofowicz and
Long, 1991) and the receiver operating characteristic
(Krzysztofowicz and Long, 1990). For the PQPF,
the primary verification measures will be the calibra-
tion score (Krzysztofowicz and Sigrest, 1999) and the
informativeness score (an extension of the Bayesian
correlation score of Krzysztofowicz (1992)).
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6 CLOSURE
In a nutshell, the research program outlined

herein is expected to advance (i) the science of the
NWP model output processing (including ensemble
processing), and (ii) the capability of forecasting
weather probabilistically.

A coherent set of Bayesian techniques will har-
ness recent advances in Bayesian statistical theory,
multivariate distributions, estimation methods, and
ensemble forecasting. For each of the three types
of predictands (binary, multi-category, continuous),
there will be:

• the BPO, a technique for processing output
from a NWP model into a probabilistic forecast;

• the BPE, a technique for processing an ensem-
ble of outputs from a NWP model into a probabilistic
forecast; and

• the Bayesian verification measures for proba-
bilistic forecasts produced via either BPO or BPE.
In addition, this research program is expected to ad-
vance the capability of producing

• the PQPF, which is based on either a sin-
gle output or an ensemble of outputs from a NWP
model, and which meets requirements of hydrological
forecasting.
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