
4.3 BAYESIAN PROCESSOR OF OUTPUT FOR
PROBABILISTIC FORECASTING OF PRECIPITATION

OCCURRENCE

Coire J. Maranzano and Roman Krzysztofowicz∗

University of Virginia, Charlottesville, Virginia

1 INTRODUCTION

The Bayesian Processor of Output (BPO) is a
theoretically-based technique for probabilistic fore-
casting of weather variates (Krzysztofowicz, 2004).
It processes output from a numerical weather predic-
tion (NWP) model and optimally fuses it with cli-
matic data in order to quantify uncertainty about a
predictand. The first version of the BPO is for binary
predictands. It is being tested by producing proba-
bility of precipitation (PoP) occurrence forecasts for
a set of climatically diverse stations in the contiguous
U.S. For each station, the PoPs are produced for the
6-h, 12-h, and 24-h periods up to 84-h ahead. The
overall setup for the test is parallel to (but smaller in
scope than) the operational setup of the AVN-MOS
system. This system was developed by the Meteo-
rological Development Laboratory (MDL) of the Na-
tional Weather Service by applying the Model Out-
put Statistics (MOS) technique to output fields from
the Global Spectral Model run under the code name
AVN. The BPO retrieves samples for the estimation
of its forecasting equations from the same archive that
was utilized in the development of the AVN-MOS;
and the performance of the AVN-MOS system is the
primary benchmark for evaluation of the performance
of the BPO.

This paper presents a tutorial introduction to
the BPO for PoP. Modeling and estimation are ex-
plained using a single predictor (an estimate of the
total precipitation amount during a specified period).
Numerical results are presented for one predictand (6-
h period, 42—48h after the 0000 UTC model run), one
station (Buffalo, New York), and one season (cool sea-
son). The performance of this tutorial BPO (which
uses one predictor) is evaluated in terms of informa-
tiveness and calibration and then compared with the
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performance of the operational MOS (which uses four
predictors). The results highlight the superior effi-
ciency of the BPO in extracting the predictive infor-
mation from the output of a NWP model. Implica-
tions of this fact on further development of the BPO
and on its potential advantages are discussed.

2 BPO TECHNIQUE

2.1 Variates

Let V be the predictand – a binary variate serv-
ing as the indicator of precipitation occurrence at a
specified point and during a specified period of the
day, with V = 1 if and only if precipitation occurs,
and V = 0 otherwise; its realization is denoted v,
where v ∈ {0, 1}.

LetX be the predictor – a variate whose realiza-
tion x is used to forecast V . Here X denotes an esti-
mate of the total precipitation amount during a speci-
fied period, output from the NWP model with a spec-
ified lead time. Typically, X is a binary-continuous
variate: it takes on value zero on some days, and pos-
itive values on other days. Thus the sample space
of X is the interval [0,∞), and the probability dis-
tribution of X should assign a nonzero probability
to the event X = 0 and spread the complementary
probability over the interval (0,∞) according to an
appropriate density function.

2.2 Inputs

With P denoting a probability and p denoting a
generic density function, the inputs into the BPO are
defined as follows.

g = P (V = 1) is the prior probability of event
V = 1; it is to be estimated from a climatic sample
{v} of realizations of the predictand V .

rv = P (X = 0|V = v) for v = 0, 1; it is the
probability of the predictor X taking on value zero,
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conditional on the hypothesis that the event is V = v.
hv(x) = p(x|X > 0, V = v) for v = 0, 1; hv is

the density function of the predictor X, conditional
on the hypothesis that X takes on a positive value,
X > 0, and that the event is V = v.

The four elements (r0, r1, h0, h1) – two con-
stants, r0 and r1, and two univariate density func-
tions, h0 and h1 – comprise the family of the likeli-
hood functions of V . These four elements are to be
estimated from a joint sample {(x, v)} of realizations
of the predictor X and the predictand V .

2.3 Forecast

The probabilistic forecast is specified in terms
of the posterior probability π = P (V = 1|X = x)
of precipitation occurrence, V = 1, conditional on a
realization of the predictor X = x output from the
NWP model. The forecasting equation is

π =

·
1 +

1− g

g
L(x)

¸−1
, (1)

where (1−g)/g is the prior odds against event V = 1,
and L(x) is the likelihood ratio against event V = 1
given by

L(x) =


r0
r1 if x = 0,

1− r0
1− r1

h0(x)
h1(x)

if x > 0.

(2)

Equations (1)—(2) define the BPO for a binary pre-
dictand, using a single binary-continuous predictor.

3 EXAMPLE OF BPO

3.1 Predictand and Predictor

The event to be forecasted is the occurrence of
precipitation (accumulation of at least 0.254 mm of
water) in Buffalo, New York, during the 6-h period
1800-2400 UTC, beginning 42h after the 0000 UTC
model run. The predictor is the estimate of the total
precipitation amount during that period output from
the AVN model. Forecasts are to be made every day
in the cold season (October — March).

3.2 Samples

The joint sample {(x, v)} comes from the data-
base that the MDL used to estimate the operational
forecasting equations of the AVN-MOS system. It
is a 4-year long sample extending from 1 April 1997

Table 1: Sample sizes and estimates of the prior prob-
ability g of precipitation occurrence; Buffalo, NY.

Month
Oct Nov Dec Jan Feb Mar

Size 123 117 123 123 111 121
g 0.098 0.231 0.268 0.285 0.234 0.207

through 31 March 2001. Although an additional cli-
matic sample {v} of the predictand is available, it
is deliberately not used herein. For the objective of
the following example is to contrast the ways in which
the BPO and the MOS extract information from the
same data record.

3.3 Input Probabilities

The prior probability g is estimated for each
month, from October through March. Table 1 re-
ports the sample sizes and the estimates of g. The
family of the likelihood functions is estimated for the
cool season (October — March). Table 2 reports the
stratification of the sample, the sizes of the subsam-
ples, and the estimates of the probabilities r0 and r1.

3.4 Input Distributions

The conditional density functions, h0 and h1,
have the corresponding conditional distribution func-
tions, H0 and H1, defined by

Hv(x) = P (X ≤ x|X > 0, V = v) for v = 0, 1. (3)

These distribution functions are modeled paramet-
rically; the parameters are estimated using an ap-
propriate subsample (370 realizations for H0 and 158
realizations for H1). At Buffalo, H0 is log-logistic
(α0, β0), and H1 is log-Weibull (α1, β1), where αv is
the scale parameter and βv is the shape parameter.
Figure 1 shows the goodness of fit and the estimates
of parameters. Figure 2 shows the corresponding
conditional density functions, h0 and h1.

Table 2: Sample sizes for the estimation of the family
of likelihood functions, and estimates of the probabil-
ities r0 and r1; cool season; Buffalo, NY.

Sample Size Probability
X = 0 X > 0 Sum rv

V = 0 190 370 560 0.339
V = 1 0 158 158 0.000
Sum 190 528 718
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Figure 1: Empirical distribution functions and fit-
ted parametric distribution functions Hv of the to-
tal precipitation amount X output from the AVN
model, conditional on X > 0 and on precipitation
event V = v (precipitation nonoccurrence, v = 0; and
precipitation occurrence, v = 1); 6-h forecast period
1800-2400 UTC, beginning 42h after the 0000 UTC
model run; cool season; Buffalo, NY.
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Figure 2: Conditional density functions hv (v = 0, 1)
corresponding to the fitted parametric distribution
functions Hv shown in Figure 1.
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Figure 3: Posterior probability π of precipitation
occurrence as a function of the total precipitation
amount x output from the AVN model, for five values
of the prior probability g; 6-h forecast period 1800-
2400 UTC, beginning 42h after the 0000 UTC model
run; cool season; Buffalo, NY.

In summary, the family of the likelihood func-
tions for the cool season is specified in terms of six pa-
rameters (r0, r1;α0, β0;α1, β1). These likelihood pa-
rameters encapsulate the informativeness of the pre-
dictor X for forecasting the predictand V . An in-
tuitive judgment can be based on the following gen-
eral relationship: the informativeness of the predictor
increases with (i) the difference between the condi-
tional probabilities r0 and r1 (see Table 2), and (ii)
the degree of separation between the conditional den-
sity functions h0 and h1(see Figure 2).

3.5 Posterior Probability

Given the family of the likelihood functions
(r0, r1, h0, h1) and a fixed prior probability g, the pos-
terior probability π can be plotted as a function of x
according to (1)—(2). Figure 3 shows the plots for
five values of g.

When x = 0, the posterior probability is π = 0,
regardless of the prior probability g, because r0 > 0
and r1 = 0. In other words, every time the AVN
model output indicates that the total precipitation
amount during the period will be zero, it provides
a perfect forecast of precipitation nonoccurrence be-
cause such an output is never observed when the pre-
cipitation does occur.

When x > 0, the posterior probability π is an
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increasing, non-linear function of x. The shape of
this function depends also on g whose value can be
easily changed. This has an important practical im-
plication: even though the family of the likelihood
functions remains fixed for a season (here the cool
season), the forecasting equation changes from month
to month as the prior probability changes (see Table
1). Consequently, the posterior probability π is cali-
brated against the climatic probability for each month
rather than for the entire 6-month season.

4 MOS TECHNIQUE

4.1 Forecasting Equation

The benchmark for evaluation of the BPO is the
currently used MOS technique (Glahn and Lowry,
1972; Antolik, 2000). For a binary predictand, the
MOS forecasting equation has the general form

π = a0 +
IP
i=1

aiti(xi), (4)

where ti is some transform determined experientially
for each predictor Xi (i = 1, ..., I), and a0, a1, ..., aI
are regression coefficients. For the predictand defined
in Section 3.1, the MOS utilizes four predictors:

1. Total precipitation amount during 6-h period,
42—48h [mm].

2. Total precipitation amount during 3-h period,
45—48h [mm].

3. Relative humidity at the pressure level of 700
mb at 48h [%].

4. Mean relative humidity of a variable depth
layer at 42h [%].

4.2 Grid-Binary Transform

With each predictor being defined at the station
(here Buffalo, NY), the transforms can be described
as follows. The fourth predictor enters (4) untrans-
formed, i.e., t4(x4) = x4. Each of the remaining pre-
dictors is subjected to a grid-binary transformation,
which is specified in terms of an algorithm (Jense-
nius, 1992). The algorithm takes the gridded field of
predictor values and performs on it three operations:
(i) mapping of each gridpoint value into "1" or "0",
which indicates the exceedance or nonexceedance of a
specified cutoff level; (ii) smoothing of the resultant
binary field; and (iii) interpolation of the gridpoint
values to the value ti(xi) at a station. It follows that
the transformed predictor value ti(xi) at a station
depends upon the original predictor values at all grid

points in a vicinity. Thus when viewed as a trans-
form of the original predictor Xi into a grid-binary
predictor ti(Xi) at a fixed station, the transform ti is
nonlinear and nonstationary (from one forecast time
to the next). The grid-binary predictor ti(Xi) is di-
mensionless and its sample space is the closed unit
interval [0,1].

4.3 Estimation

The regression coefficients in (4) are estimated
from a joint sample {(t1(x1), ..., tI (xI ); v)} of realiza-
tions of the transformed predictors and the predic-
tand. Like the sample for the BPO, this sample
includes all daily realizations in the cool season (Oc-
tober — March) in 4 years. Unlike the sample for
the BPO, this sample includes not only the realiza-
tions at the Buffalo station, but the realizations at all
stations within the region to which Buffalo belongs.
The pooling of station samples into a regional sample
is needed to ensure a "stable" estimation of the MOS
regression coefficients (Antolik, 2000). The estimates
obtained by the MDL are:

a0 = −0.11234, a1 = 0.37495, a2 = 0.28693,
a3 = 0.10625, a4 = 0.0029437.

These estimates are assumed to be valid for every
station within the region.

5 COMPARISON

5.1 Performance Measures

It is apparent that each system, the BPO and
the MOS, processes information in a totally different
manner. The objective of the following experiment
is to compare the two systems with respect to the ef-
ficiency of extracting the predictive information from
the same data record – the archive of the AVN model
output. Towards this end, each system is used to cal-
culate the forecast probability π based on every one
of the 718 realizations of its predictor (BPO) or pre-
dictors (MOS) in the data record. Then the joint
sample {(π, v)} of realizations of the forecast prob-
ability and the predictand is used to calculate the
following performance measures.

The receiver operating characteristic (ROC) – a
graph of the probability of detection versus the prob-
ability of false alarm.

The calibration function (CF) – a graph of the
conditional probability η(π) = P (V = 1|Π = π) ver-
sus the forecast probability π.
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Figure 4: Receiver Operating Characteristics (ROC)
of the probability of precipitation occurrence fore-
casts produced by (i) the BPO using a single predictor
output from the AVN model, and (ii) the MOS using
four predictors calculated from the output fields of
the AVN model.

The uncertainty score (US) – the expected re-
duction of variance of the predictand (the difference
between the prior variance and the conditional vari-
ance) as a fraction of the prior (climatic) variance:

US = 1− E([1− η(Π)]η(Π))

[1−E(V )]E(V )
; US ≤ 1.

The calibration score (CS) – the Euclidean dis-
tance (the square root of the expected quadratic dif-
ference) between the line of perfect calibration and
the calibration function:

CS =
n
E([Π− η(Π)]2)

o 1
2

; 0 ≤ CS ≤ 1.
Some basic facts pertaining to these performance

measures are as follows:
1. System A is more informative than system B

(in the sense of Blackwell (1951)) if and only if the
ROC of A is superior to the ROC of B.

2. If system A is more informative than system
B, then the US of A is not smaller than the US of B
(DeGroot and Fienberg, 1983).

3. The quadratic score (also known as the Brier
score) is equal to (1−US)[1−E(V )]E(V )+CS2.

5.2 Comparative Evaluation

The ROCs are shown in Figure 4. Each ROC
reaches the ordinate of 1 to the left of the point (1,1)

Table 3: Performance scores of the probability of pre-
cipitation occurrence forecasts produced by (i) the
BPO using a single predictor output from the AVN
model, and (ii) the MOS using four predictors calcu-
lated from the output fields of the AVN model.

System
BPO MOS

Uncertainty Score 0.3506 0.3502
Calibration Score 0.049 0.060

because each system offers the decision maker an up-
per bound on the probability of false alarm. The
bound offered by BPO is 1− r0 = 0.661. The bound
offered by MOS is 0.875. The ROC of BPO lies above
the ROC of MOS over a larger part of the interval,
but the two ROCs cross each other. Thus neither
system is more informative than the other. The un-
certainty scores, US, reported in Table 3, are nearly
identical.

The calibration scores, CS, reported in Table 3,
indicate that the BPO system is calibrated somewhat
better than the MOS system, by 0.011 on average (on
the probability scale).

5.3 Explanations

The total precipitation amount during the 6-h
period is the sole predictor utilized by the BPO. The
MOS utilizes the same predictor, which it processes
through the grid-binary transform. Why is it that
MOS needs three additional predictors to barely
match the performance of BPO? The explanation
is twofold.

First, the laws of probability theory, from which
the BPO is derived, ensure the optimal structure of
the BPO forecasting equation (1)—(2). The struc-
ture of the MOS forecasting equation (4) is different.
Thus given any single predictor, the BPO system, if
properly operationalized, can never be less informa-
tive than the MOS system (or any other non-Bayesian
system for that matter). To make up for the non-
optimal theoretic structure, a non-Bayesian system
needs additional predictors (which are conditionally
informative in that system).

Second, the grid-binary transform (Jensenius,
1992) was invented to improve the calibration of the
MOS system. But by mapping the original predic-
tor (which is binary-continuous or continuous) into a
binary predictor, this transform also removes part of
predictive information contained in the original pre-
dictor. In the example reported herein, three addi-
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tional predictors are needed to make up for the lost
information and the nonoptimal structure of the MOS
forecasting equation.

To dissect the predictive performance of the grid-
binary transform, each the MOS and the BPO was es-
timated and evaluated twice: first, utilizing the orig-
inal first predictor, and next utilizing the grid-binary
transformation of that predictor. There are two find-
ings. (i) The use of the grid-binary transform in
the MOS leads to a compromise: the transform im-
proves the CS but deteriorates the US. (ii) The use
of the grid-binary transform in the BPO is unneces-
sary for calibration (because the BPO automatically
calibrates the posterior probability against the spec-
ified prior probability) and is detrimental for infor-
mativeness (because it removes part of the predictive
information contained in the original predictor).

6 CLOSURE

6.1 Preliminary Conclusions

1. The BPO utilizing a single predictor per-
forms, in terms of both informativeness and calibra-
tion, at least as well as the MOS utilizing four predic-
tors. This shows that BPO is more efficient than
MOS in extracting predictive information from the
output of a NWP model.

2. The single predictor in the BPO is a direct
model output (interpolated to the station), whereas
three out of four predictors in the MOS are grid-
binary predictors whose definitions require subjective
experimentation (to set the cutoff levels and smooth-
ing parameters) and algorithmic processing of the en-
tire output fields (to calculate the predictor values).
Thus in terms of the definitions of the predictors, the
BPO is more parsimonious than the MOS.

6.2 Potential Implications

1. There exists a potential for increasing the
performance of the BPO by including other predic-
tors that are informative, conditionally on the first
predictor already utilized. For instance, almost all
applications of MOS and other regression-type tech-
niques in the U.S., Canada, and Europe utilize rela-
tive humidity at a fixed pressure level as one of the
predictors. This and other predictors will be tried in
the BPO as well.

2. Inasmuch as the grid-binary predictors can
be dispensed with because only the basic and derived
predictors need be considered by the BPO, the set
of candidate predictors for the BPO is about 50%

smaller than the set of candidate predictors for the
MOS. For instance, in one case we counted 67 can-
didate predictors were offered to the MOS screening
regression process – the number that could be re-
duced to 28 for the BPO. In general, the overall
effort needed to select the most informative subset of
predictors can be reduced.

3. With fewer number of predictors (say between
one and four for BPO, instead of between four and fif-
teen for MOS), an extension of the BPO to processing
an ensemble of the NWP model output will present a
less demanding task (in terms of data storage require-
ments and computing requirements) than it would be
if an extension of the MOS technique were attempted.
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