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RESOLVING MULTIPLE FLAGS THROUGH A DECISION TREE
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1. INTRODUCTION

Beginning in 2001, historical hourly surface
airways observations (SAOs) have been digitized from
their original paper forms, as part of the Climate
Database Modernization Program (CDMP), National
Oceanic and Atmospheric Administration, U.S.
Department of Commerce. This particular data
recovery mission has extended the period of record for
hourly meteorological data back an additional two
decades, from the previously available start date of
1948 into the late 1920s. Prior to making these data
available, quality assurance (QA) procedures were
developed, with the goals of improving the individual
component checks themselves (Graybeal et al. 2002)
as well as the decision-making process by which flags
are ultimately mapped into a data base. This paper
provides an overview of the resultant QA system,
describes the decision tree for mapping flags,
summarizes its performance, and discusses lessons
learned.

2. COMPLEX QA AND THE DECISION TREE

Complex QA evolved from more traditional
QA, not only by providing individual component checks
in greater number and/or complexity, but also by using
a decision-making algorithm that weighs all the
evidence from flags thrown by the individual tests, also
called component checks (Gandin 1988). Such a
treatment can handle varying degrees of severity of
nonconformance of observations with QA models,
rather than simply flagging in the event any component
check failed. In Fig. 1, the implementation of complex
QA in the present effort is diagrammed. An hourly
record (meaning one line or row in a data base flat file)
is examined, containing temperature, humidity, wind,
present weather, visibility, cloud cover, and pressure
information. This hourly record is then submitted to a
battery of component checks that evaluate the elements
in that record. Checks are made for limits consistency
(LC; e.g., climatological) as well as for internal
consistency (IC; e.g., dry bulb is at least as great as
dew point). A third type of component check is for
temporal consistency (TC) and generally looks for blips
(excess variability) or runs (excess invariability).

Flags may be thrown by all three types of
component checks on a given element in that hourly
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Fig. 1. Complex QA of CDMP SAOs diagrammed.

record. This situation necessitates a process to decide
which of the several elements that may be involved is
the most likely responsible, the most suspect. For
example, if an IC flag is thrown on dry bulb and dew
point, as well as a TC flag on dry bulb, chances are that
the dry bulb is truly suspect and the dew point can be
dropped from further consideration for flagging.

Critical to the operation of the decision tree
developed here is a table of component flag counts by
element and by component type (the "flag type table").
Consider the example of a dry bulb observation of
—5.5°C; one lone misdigitization of that dry bulb as
—55°C can raise as many as seven component flags
(Table 1). Note that each component flag is indexed by
its type, which is generally (but not always) defined by
the number of elements involved in its check procedure.
The three different types are needed to provide
independent information. LC and TC checks generally
consider one element at a time, whereas IC checks
consider two or more. Table 2 illustrates the flag type
table for the case of the fallacious —55°C dry bulb. In
this case, both the LC and TC flag tallies provide
independent information about the character of the dry
bulb element. For dry bulb, not only is the highest flag
count per element recorded, but also flags from all three
types. Thus, the value for this element at this hour is
considered highly suspect.



Table 1. Component flags raised by a single gross
misdigitization of dry-bulb temperature.

Flag Type Flag Message

LC Dry bulb out of bounds

IC Wet bulb exceeds dry bulb

IC Dew point exceeds dry bulb

IC Dew point depression inconsistent with
diurnal temperature range

IC Mismatch among dry and wet bulbs, dew
point, and station pressure

IC Mismatch among station and sea-level
pressures, dry bulb, and elevation

TC Blip in dry bulb

Table 2. Example of the flag type table used in mapping
component flags to individual elements.

Element LC IC TC Flag
Flags Flags Flags Total

Dry bulb

Wet bulb

Dew point

Station pressure
Sea-level pressure
Elevation
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The decision tree evaluates the initial flag type
table by a three-tiered process. The first tier has just
been illustrated; the procedure looks for elements on
which component flags have been thrown from more
than one flag type. This represents the most suspicious
case. If any are found, those elements are
automatically considered erroneous. Processing
continues with the element having the highest overall
flag count. In the example above, the procedure begins
with dry bulb. Next, all component flags (Table 1)
associated with that element are removed, and the flag
type table is recalculated from any remaining
component flags. At that point, the procedure searches
again at the top tier. In the example given, no other
component flags remain after those associated with dry
bulb have been removed from consideration, and the
procedure terminates, flagging only the dry bulb with
the code for "Erroneous."

Suppose two component flags are thrown on a
given hourly record, indicating that wet bulb exceeds
dry bulb and that dew point exceeds dry bulb (both IC
checks). This condition illustrates the second tier in the
decision tree, executed when the flag type table
indicates at least one element is associated with more
than one flag from any type. In this example, dry bulb is
associated with two component flags and the other two
elements with one flag each. The procedure continues
as outlined above, removing all component flags

associated with the element having the highest overall
flag count (here, dry bulb), and repeating the test on the
recalculated flag type table. In this example, no
component flags are left, and the procedure terminates,
flagging only dry bulb, also with the code for
"Erroneous," as more than one line of evidence
suggests it is suspect.

Occasionally there may be a tie of two or more
IC flags per element, for two or more elements. In that
case, the condition of "Erroneous" is no longer
assumed. Suppose that, instead of the flag on dew
point, a flag showing a mismatch among dry bulb, wet
bulb, dew point, and station pressure was thrown.
Then, both dry bulb and wet bulb would have two IC
component flags each, but with no other types of flags.
Not enough evidence is presented to the decision tree
to choose one element over the other as more
suspicious, so the flag code for "Suspect" is given to
both elements involved. The same action is taken if
only one flag per element is found; all such elements
are flagged "Suspect,” if no other information is
available to suggest otherwise. Thus, the third tier of
the decision tree is illustrated.

3. CLEANING

Before any meteorologically or climatologically
based QA can be implemented, the data base must be
in chronological order and its records keyed by unique
and complete sets of identifiers. Guttman (2002)
provides a nice discussion of cleaning problems, many
of which were encountered here as well. For example,
the station identifier and the year must match what the
station-yearly file name indicates, and they must key
the records for the correct station and year. None of
the identifier elements was left missing, such as would
result from the digitizer's code for illegibility. Impossible
time stamps, such as 31 February or 7300 hours, were
also treated as missing. Multiple or duplicate time
stamps were discarded in separate files for later
inspection, following a first-found, first-kept rule;
subsequent manual analysis allowed some blocks to be
reinserted or indexed to a different station.

One interesting aspect of these historical data was that
the observation schedule, in minutes past the hour,
evolved over the 20-year period of focus. Instead of
making an abrupt transition from the 20s minutes to the
50s minutes, as occurred in June 1957 (Steurer and
Bodosky 2000), the schedule varied fluidly over time,
from the 40s and 50s minutes schedule in use during
the early 1930s, to the 20s minutes during the late
1940s. The time stamp was mapped to the nearest
hour based on a moving window directional mean
minute (Mardia 1972) and using the results of extensive
frequency analysis to determine the cutoff (34 minutes)
for rounding forward or backward. The entire pre-QA
cleaning process resulted in only approximately 0.25%
of more than 14 million hourly records being eliminated.
This percentage is similar to Guttman's (2002).
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Fig. 2. Boxplots of (log, base 10, of percent) flag rate

per year over all stations. Black boxes
indicate all flags ("Suspect" and "Erroneous"),
while grey boxes indicate "Erroneous" flags.

4. PERFORMANCE, WITH DISCUSSION

Of the hourly records passing cleaning, about
9.5% have a flag on at least one of its elements.
Although this flag rate is comparable to those reported
from QA of other data sets (Eskridge et al. 1995), it is
still fairly high. However, only about 0.4% of all records
have an "Erroneous" flag on at least one of its
elements, illustrating the value of the tiered flag
structure to users. Again, this more stringent flag rate is
comparable to those obtained in QA of other data sets
(Kunkel et al. 1998; Guttman 2002). Fig. 2 illustrates
the asymptotic changes in flag rate (expressed as
percent of hourly records having at least one element
flagged) over time, for all stations examined. Boxplots
are fairly standard, featuring the interquartile range
(IQR) by the box and the median by the middle line.
Beginnin% about 1937 or 1938, the flag rates level off at
about 10°°% 23%) overall ("Suspect" and "Erroneous”
flags), or 107°°% (0.3%) for "Erroneous" flags. Prior to
that time, overall flag rates were significantly higher.

The large flag rates, both overall and prior to
1937, suggest the presence of systematic errors, in
addition to the random errors that most component
checks were designed to catch. Both types of errors
should be caught in a complete QA (Eskridge et al.
1995); however, the scale of focus required for catching
systematic errors is longer than for random errors. This
is because systematic errors usually persist for some
time.

Early in processing these data, blocks of time
were found during which the dew point depression

(DPD) had been substituted for dew point by the
observer on the original form, or vice versa. One of the
more elaborate component checks developed for this
complex QA examines daily maximum DPD in relation
to the diurnal temperature range (DTR). A nearly 1:1
linear relationship was found, when both variables are
transformed logarithmically (after adding to each one
tenth the precision in recording the temperatures, as
precaution against attempting to transform zeros).
Details of this procedure are given elsewhere
(manuscript submitted to J. Appl. Meteor.). Although it
performed suitably in detecting random errors, it was
designed with systematic dew point-DPD reversals in
mind. Toward the latter end, it flagged about 40% of
individual hourly records that were part of long,
contiguous blocks of systematic reporting error.

This flagging practice illustrates two general
problems with these types of components that focus on
hour-to-hour conditions. First, less than half the
systematic errors are flagged, due perhaps to the
differences in scale between the focus of the test and
the manifestation of the systematic error. Second, even
flagging nearly half the systematic errors presents the
user with the problem of having to handle so many
hundreds or thousands of flagged data. In other words,
applying hour-to-hour checks to systematic errors
amounts to imprecision in catching them and
inefficiency in dealing with them. These problems are
not limited to the DPD-DTR check; IC checks for
pressure that involve station elevation behave similarly.
Pressure estimation is sensitive to changes in elevation,
such as may accompany station moves. If the move is
not recorded in the metadata and causes the pressure
estimate to fall outside the tolerance of the check, a
long run of pressure flags is generated.

5. CONCLUSIONS AND FUTURE RESEARCH

The issues raised in the previous section are
not easily resolved by existing techniques. Random
errors have been the focus of traditional QA checks that
operate on the time scale of one to tens of the temporal
units of resolution, e.g., hour-to-hour or a one-day
moving window. On the other hand, inhomogeneity
analysis (IA) techniques exist that address systematic
errors persisting over the scale of years to decades.
The kinds of systematic errors encountered in this
hourly data set require solutions developed on an
intermediate time frame. Fortunately, some work is
already being done for daily and monthly data sets
(Menne and Duchon 2002) that recognizes this same
need for an intermediate-term time frame for IA. Most
IA practitioners agree a reference time series is needed
to optimize its performance on a candidate series
(Peterson et al. 1998), and Menne and Duchon use
such a series composited from a spatial window. While
a spatially interpolated reference series is plausible for
the dense networks they consider, it is not feasible for
the sparse, early-twentieth century airways network
such as is under QA here. For the present work,



reference series must come from the same station, but
another weather element.

Using the relationship previously found in log
space, daily maximum DPD is subject to an exploratory
IA, using coincident DTR as a reference series. A is
performed on the "DPD factor," simply the ratio of DPD
to DTR in log space, each variable incremented by
0.01°F prior to transformation. Fig. 3 (a) shows the time
series of monthly median, daily DPD factor over the
CDMP period of record at Columbus, Ohio (ID #14821);
Fig. 3 (b) shows the weekly median for just the year
1935. In both plots the expected ratio near 1 is given
by a dashed line; in the latter, the medians of two
different segments, the difference highly significant by a
modified Wilcoxon-type rank sum test (p-level <
0.001%) (Lanzante 1996), are given by solid lines. The
first segment, extending through week 35, is much
above expected. Inspection of the 1935 records
indicates the DPD switch was initiated on 20 January
and maintained until 30 September; the latter coincides
within one month of the changepoint identified by
Lanzante's (1996) procedure. Thus, Menne and
Duchon's "middle way" may be promising, if a suitable
within-station reference series can be found from
another weather element. Changepoints found can be
used to guide manual intervention, such as simply
flipping the DPD switch on a block of data. While such
a technique is not available for the current data release,
it may be developed for, and applied to, a later upgrade.
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