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1 INTRODUCTION

The simple-pattern-scaling idea (Santer (1990)) has
been recently tested for average temperature and pre-
cipitation change signals, and proven to perform ex-
tremely satisfactorily (Ruosteenoja (2003), R&al.03
from now on).

In this paper we want to address two important as-
pects of the application of pattern-scaling to climate-
change projections, that have been insufficiently stud-
ied so far. The first one is the evaluation of the scaling
method for different horizontal scales of resolution, i.e.
for different scales of regional aggregation. The second
is the computation of uncertainty measures, to be at-
tached to the scaled values, in order to provide a degree
of confidence in the robustness of the scaled signal.

We use runs of the NCAR PCM-DOE model (Wash-
ington (2000)), performed under the two SRES sce-
narios A2 and B2 (Nakicenovic (2000)), and we study
average surface temperature and precipitation patterns
of change between the two periods of 1961-1990 and
2070-2099, separately for the four seasons.

The different horizontal resolutions at which the
method is tested are defined either by recursively parti-
tioning the 32 regions used in R&al.03, along perpen-
dicular lines passing through the regions’ centroids, or
by a climatology-based definition of regions, in which
observed climatological variables are used for cluster-
ing gridpoints, at different levels of aggregation. The
first method provides regions encompassing contiguous
areas. The second method creates a nested series of
partitions based on climatological similarities, but the
regions may not be connected.

The main goal of this study is to explore how the
performance of the scaling method varies when going
from signals aggregated over vast regions to signals
at finer levels of aggregation, and how the uncertainty
characterizing the results varies in the process.
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2 THE SIMPLE PATTERN SCALING
METHODOLOGY

For more than a decade the idea of using fixed,
AOGCM derived, geographical patterns of climate
change — under the hypothesis that they can be con-
sidered constant across different emission scenarios, at
least if the latter are characterized mainly by forcings
from long-lived, well mixed gases — and rescale them on
the basis of a global mean change signal, perhaps de-
rived, for any scenario, from a simpler energy-balance
model, has been demonstrated to be a valid one (San-
ter (1994), Mitchell (1999)).

The essence of the method can be summarized as fol-
lows: Define the normalized (per 1deg C mean global
warming) pattern of change for variable X,

AX(z)

estimated for each spatial location z, e.g. from the run
of a fully coupled GCM under some forcing pattern.
Then, under the hypothesis that the response signal
patterns are largely independent of the forcing patterns
and remain approximately constant in time, the signal
pattern at any future time ¢ can be computed as

AX(z,t) = AT(t) - [AX (z)]

where AT(t) is the global mean temperature change.
Notice that the scaling is done using the global mean
change in temperature, for any variable X.

For our exercise, both AT'(t) and AX(z) are derived
from the NCAR PCM-DOE runs under respectively, the
A2 and B2 emission scenarios. We will be thus com-
puting the scaled AX(z,t) for the A2 emission sce-
nario from normalized spatial patterns of change de-
rived from the B2 run, rescaled by the global mean
temperature change signal as simulated under the A2
run. In this idealized situation, we will be able to com-
pare the scaled signal of change to the true one, i.e.
the one derived directly from the A2 run of the PCM.
In a more realistic setting, AT (t) would be derived by
running a simpler model (an energy balance model, for



example, that just produces global mean responses) un-
der the A2 scenario. Such simpler models can be tuned
to reproduce global average responses of fully coupled
AOGCMs, through setting of some free parameters.
Following R&al.03, we scale surface temperature and
percent precipitation changes. "Change” is defined as
the difference between 30-yr averages computed from
year 1961 through 1990 and 2070 through 2099. We
consider this large time interval in the spirit of the
method, which dictates the use of the signal of change
for the scaling exercise, that we take to be the differ-
ence between two "long enough” time averages taken
at "distant enough” times. We do so separately for the
four seasons defined as usual (DJF/MAM/JJA/SON).

3 FROM GRIDPOINTS TO REGIONS
AND BACK 'DOWN’ AGAIN

We start by scaling the two variables’ pattern of change
at the finest level, i.e. the gridpoint values. For the
sake of conciseness we show images of a single season
(DJF for temperature, MAM for precipitation). Fig-
ure 1 show global images of the temperature change
signals from the A2 and B2 scenarios in the first two
panels, and the scaled A2 derived through simple pat-
tern scaling from the B2 run in the third panel. The
last panel shows the difference between scaled signal
and true signal, divided by an estimated measure of
natural variability at each gridpoint. The latter has
been derived by computing the standard deviation of
the corresponding — gridpoint specific — time series
of temperature from an all-forcings run used to create
the baseline climate of the 1961-1990 period. Figure 2
shows the corresponding images for the precipitation
change signal (as % of present-day average precipita-
tion). Notice, first of all, the different spatial structure
of the temperature fields compared to the precipita-
tion fields. The former are much smoother, the errors’
value being close to zero over most of the globe, with a
few patches of underestimated change over the ocean
and areas of overestimated change (slightly less in ab-
solute value) over the high latitudes of the northern
hemisphere and the land masses of South America, and
Africa. From a comparison across seasons (not shown),
winter (DJF) seems to present the largest errors in ab-
solute value, summer (JJA) the smallest. Precipitation
fields are relatively harder to interpret, because of the
more irregular nature of the spatial patterns. It is still
true that the scaling method performs well on average,
with most of the field well within the limits of natural
variability (i.e. the values being for the most part less
than 1) but the error field appears interspersed of small
areas where the error is as large as twice the natural
variability in absolute value. The range of the errors

appears similar for temperature and precipitation.

The values represented in the second and third panel
of Figures 1 and 2, the true and scaled signals of tem-
perature and precipitation change, and the correspond-
ing ones for the three seasons not shown, constitute the
basic ingredients of the first part of our analysis. We
will aggregate the scaled and true values into regional
averages, for regions of different sizes, look at how the
two sets of averaged values compare to each other, and
how the comparison changes at different spatial scales
of aggregation. As for the error values, i.e. the differ-
ences between the scaled and true patterns of change
represented in the fourth panel of Figures 1 and 2, we
will model them at the gridpoint level, and use the esti-
mated statistical structure to attach uncertainty mea-
sures at each scale of aggregation.

3.1 BOXY REGIONS
REPARTITIONING

AND THEIR

We start from the regional aggregation used by
R&al.03. The 32 regions, represented in Figure 3, have
been derived on the basis of climatological principles,
and have fairly different sizes, although they all range
over subcontinental scales of around 10%/107km?. Fig-
ure 4 for temperature change and 5 for percent precip-
itation change reproduce the results in R&al.03, show-
ing how the scaled values aggregated over each region
compare to the true values, identically aggregated. The
four plots in each panel correspond to the four sea-
sons. A perfect match would be represented by points
on the straight 45 deg line plotted as a reference, and
the points in each plot do not depart dramatically from
this reference line. The root mean square error (RMSE)
and the R? value for each scatterplot are also printed.

It is evident how, at this spatial scale, the correspon-
dence of scaled to true values is extremely tight, for
both temperature and percent precipitation changes.
Notice though how such representation does not al-
low for any assessment of uncertainty in the results,
which is one of our goals. Also, there are differences
in the performance of the method across seasons, with
the cooler (adopting a Northern hemisphere point of
view) seasons, DJF and SON, being less accurately
approximated, at least in terms of RMSE than the
warmer seasons, JJA and MAM. Lastly, precipitation
change is comparatively harder to scale than tempera-
ture change, as it is to be expected.

Next, we recursively subdivide each region into four
subregions (quadrants) and recompute RMSE and R2
values, for each of the new set of regions. Table 1
and 2 show these values for temperature and precipi-
tation, respectively. Notice how the values of RMSE
become larger and, correspondingly, the R? values de-



crease, although both do so in a fairly gradual fashion.
There does not seem to exist a particular scale at which
the validity of the scaling method starts to fall apart.
Rather, the linearity assumption is increasingly eroded
for finer and finer scales of resolution. Still, even at
the finest scale (close to the gridpoint level), the lin-
earity of the relation is obvious. What these measures
of performance cannot address, though, is the possible
presence of a systematic spatial pattern in the errors.
Again, this is the object of the second part of our anal-
ysis, when we model the error fields derived from the
difference between true and scaled values at the grid-
point level.

3.2 CLIMATOLOGY-BASED
GIONS

SUBRE-

On the basis of a climatology dataset available on the
IPCC Data Distribution Center (DDC) website
(http://ipcc-ddc.cru.uea.ac.uk, New (1999)),
we build a cluster analysis of the model gridpoints
based on the observed and regridded variables:

1. Temperature: mean, maximum and minimum;

2. Precipitation: occurrence and intensity.

Each of the variable, at each gridpoint, has been
aggregated into 4 seasonal values, representing aver-
ages for the period 1961-1990. We regridded the DDC
product (the grid format (5deg resolution) available
from the DDC is different from the PCM grid (2.5 deg
resolution), by means of linear interpolation. Also, the
matrix comprised of the 20 = 4 x (3 + 2) climatology
variables, whose rows correspond to gridpoints, was
decomposed by a principal component analysis. Seven
principal components were found to explain more than
99% of the variance of the original matrix, and the clus-
tering was based on the Euclidean norm of these seven
leading rotated components. We inverted the order of
the seasons for gridpoints in the Southern hemisphere,
in order to allow regions with similar climatology to be
clustered together, independently of their geographi-
cal location. Figure 6 shows the tree structure of the
hierarchical clustering. By 'cutting’ the structure at
different heights one can identify different numbers of
clusters, and on average, given the homogeneous form
of the cluster aggregation, the higher the cut, the larger
the size of the clusters identified. Conversely, one can
start from the top of the structure, corresponding to
evaluating the scaling performance at the global level
(perfect by construction) and recursively do so for grad-
ually smaller clusters of gridpoints, to end with each
gridpoint separately forming its own cluster.

We start by deriving 22 clusters/regions, the same
number of land regions as in R&al.03 (notice that the
climatology dataset on which we base the clustering is
available only over land). Figure 7 shows the corre-
sponding regions, each cluster identified by a different
color. By two new sets of scatterplots, Figure 8 for
temperature change and Figure 9 for percent precipi-
tation change, we show the performance of scaling for
this scale of aggregation, separately for each season,
and we also write values of RMSE and R? in each of
the panels. The performance at this scale is very simi-
lar to what was found for the 32 regions derived from
R&al.03.

Again, a comparison of the performance measures
for different spatial scales of aggregation, obtained by
gradually 'relaxing’ the cluster structure, is available
in Table 3 for temperature and Table 4 for precipi-
tation and shows only a gradual deterioration of the
agreement between scaled and true values, without an
obvious 'threshold effect” when spanning the spectrum
of resolutions. This result is also consistent with what
was found by the alternative method of regionalisation.

A few features, common to both types of disaggre-
gation, are noteworthy:

e as expected, temperature changes are scaled more
accurately than precipitation;

e the deterioration of the agreement between scaled
and true quantities is faster for precipitation than
temperature changes;

e temperature changes are scaled consistently well
at all spatial scales and in all seasons, with a very
slow degradation of the results, with respect to
both measures of goodness of fit;

e error in scaling precipitation are significantly larger
in SON;

e there is strong consistency in the results between
the two methods of aggregation, for both mea-
sures of goodness of fit.

4 STATISTICAL MODELS FOR THE
GRIDPOINT ERROR: HOW UNCER-
TAIN ARE THE SCALING RESULTS?

4.1 ERROR-CHARACTERIZATION
FOR AT

In order to characterize the uncertainty in the scaling
results we model the error patterns shown in the fourth
panel of Figure 1, and the corresponding patterns for
the three seasons not shown as gaussian random fields.
After characterizing mean and covariance function of



the season-specific gaussian process, we will simulate
replicates of the field and compute summary statistics
of the errors, on the basis of the two methods of spatial
aggregations, for various scales of resolution.

Modeling these fields requires addressing two issues,
immediately apparent when inspecting the images in
Figure 1 and 2. The error structure seems to be elon-
gated longitude-wise, rather than extending homoge-
neously in all directions, and the structure appears dif-
ferent at high latitudes than at low latitudes. Other
kind of spatial structure were tested and ruled out, like
for example dependence on land/ocean locations and
on topography.

Thus we choose to transform the set of grid co-
ordinates according to two geometric anysotropy pa-
rameters estimated through sample variograms, com-
puted separately for the East-West and North-South
directions, for the high latitude regions. In the trans-
formed coordinates, an isotropic gaussian model is fit-
ted, whith Matern correlation structure, separately for
high latitude (between (-90,-30) and (30,90) degrees)
and low latitude (between -30 and 30 degrees) regions.

Generating sample replicates after having estimated
all model parameters (mean, range, scale and smooth-
ness) follows these steps:

1. A gaussian field, mean zero and variance one of
uncorrelated random variables is generated, for the
entire grid.

2. The two mean and covariance structures — esti-
mated for low and high latitudes — are applied
separately to the same field, in order to transform
it into two fields having the desired spatial struc-
ture.

3. The two fields are merged by applying smoothly
varying (latitude-wise) weights, close to one in the
high latitudes and close to zero in the low latitudes
for one of the fields, and viceversa for the second
(each corresponding couple of weights summing
to one).

4. The same procedure is applied as many times as
we want replicates, for each seasonal error fields
(we choose 100 replicates per season)

Figures 10 shows example replicates of winter (DJF)
error fields. One of the panels is the true error field.
The captions indicate which one, but the reader may
want to guess its position. If the guess turns out to be a
difficult one, that will be a first order assessment of the
quality of the simulation procedure. Notice that the
color palette was chosen to emphasize regions where
the error is in absolute value greater than one, thus
discounting errors within the range of natural variability

(between -1 and 1) and highlighting errors outside the
range.

The goal of this part of our analysis is an assess-
ment of the uncertainty in the scaling results, as a
function of season, and spatial scale of aggregation.
We are trying to add a distributional characterisation
to the single seasonal error realization of Figure 1. Of
course, one could do so in abstract, as a function of
the Matern covariance parameters, but we choose to
use the simulation device, as a more effective depiction
of the results. For each season, we are going to aggre-
gate every one of the 100 error fields into the regions
defined in R&al.03 and our climatology-based cluster-
ing, at their various scales of resolution, and compute
standard deviations of the error values within each re-
gion, across the 100 error fields. The mean being zero
by construction, what matters is the variability of the
error values from one realization to the next, in order
to assess the uncertainty in the results of a single scal-
ing exercise. We can then compare the distribution of
these standard deviations as a function of the spatial
scale of aggregation, the season and the method of
regionalisation.

A series of boxplots in Figure 12, summarize these
distributions. In each column the four plots correspond
to the four season (DJF,MAM,JJA ,SON). In each fig-
ure, plots on the left correspond to the regionalisation
based on recursively partitioning the 22 original land
regions from R&al.03, while plots on the right corre-
spond to the climatology-based method of regionali-
sation. The six boxplots in each panel correspond to
different spatial scales of aggregation. Corresponding
to each boxplot is the approximate average size of the
regions expressed in square miles (on a log;, scale).
In the legend we also list the number of regions corre-
sponding to each boxplot. For example, the first box-
plot in the left panels corresponds to a discretisation
into 1792 land regions, the average area of each being
on the order of 10,000 square miles. The discretisa-
tion is coarser and coarser from left to right, with the
last boxplot corresponding to only 18 regions, with an
average area of 10 million square miles.

It is striking how similar the series of boxplots in the
left column are to the corresponding ones in the right
columns, in both figures. This confirms the results
obtained in the previous sections, where the pattern-
scaling method seemed to perform similarly for the two
methods of discretisation. As for seasonal differences,
they are not striking, but one could argue that spring
shows the least amount of variability.

An important question that the series of boxplots in
each panel should answer is if the error values, when
averaged across regions, behave differently at different
scales of regional discretisation. In fact, an apprecia-



ble difference can be read in the distributions, shifting
from higher values in mean and wider ranges to smaller
values and tighter ranges with decreasing resolution,
suggesting that the variability of average error values
for smaller regions from one simulated error field to an-
other is higher than for larger regions. Evidently, this is
due to the spatial structure (extent) of the error areas,
that are more easily averaged out over larger regions
than over smaller ones.

Notice though that all the values are well within nat-
ural variability limits, the standard deviations being be-
low 60% even at the finest level of resolution.

4.2 ERROR-CHARACTERIZATION
FOR AP

We proceed to a similar analysis of the seasonal error
fields for % precipitation change, the spring (MAM)
case of which was shown in Figure 2. The error val-
ues are expressed as percent precipitation change with
respect to true percent precipitation change under the
A2 scenario, divided by a measure of natural " percent
standard deviation”. The latter measure was computed
with respect to the average precipitation field in present
day climate, derived from an all-forcings run used to
represent the baseline climate of the 1961 through 1990
period, similarly to what we described in the analysis
of temperature.

The same spatial analysis performed for the error
fields in the scaling of temperature change was ap-
plied. Because of the heterogeneous characteristics of
the error fields, easily detectable by eye, we divided
each image into bands of low-latitude regions (within
+50 degree latitude) and high latitude regions (out-
side the +50 degree limits) and estimated two differ-
ent spatial covariance models, the one for high latitude
anisotropic, i.e. allowing for the covariance structure in
the zonal direction to be different from the one in the
meridional direction. Similarly to the analysis of the
error fields for AT, this result was produced by first
estimating a deformation of the coordinate system and
then applying an isotropic model to the transformed
coordinates. Figure 11 shows true and simulated error
fields for the MAM case, again with the true error field
identified only in the caption. Figure 13 is also address-
ing the question of how variable, and thus uncertain,
are the error values computed at each scale of resolu-
tion. Again, the message is a significant increase of
the variability for finer scales, and rather constant be-
havior across seasons, and methods of regionalisation.
Still the highest variability at the finest resolution is
within 60% of the natural variability.

5 CONCLUSIONS

We have studied the performance of simple pattern-
scaling as a function of spatial aggregation, for both
temperature and precipitation changes, and found
that the method performs accurately (as measured by
RMSE and R2 between true and scaled values), down
to very fine scales of spatial resolution. The degra-
dation of the performance is gradual, and even at its
worst it remains well within the measures of natural
variability estimated from a present-day climate run of
the same AOGCM used for the future projections.

By modeling the error fields at their finest resolution,
the gridpoint level, as gaussian random fields (after
a transformation of the coordinates that, in first ap-
proximation, accounts for having stretched the globe
into a flat rectangle) we obtained measures of uncer-
tainty in the form of the expected standard deviations
of the regional-scale errors. By way of simulations, we
presented the distribution of the errors as a function
of spatial aggregation, confirming once again that the
method performs within the range of natural variability.

This is work in progress. We need to make our ex-
ercise more realistic, by substituting the “true” global
mean measure under the scenario of interest, that we
obtained from the same AOGCM run from which the
“true” signal was extracted, by the one produced by
an intermediate model. This will introduce an addi-
tional source of approximation and uncertainty, even
if it will be limited to the mean compoent of the er-
ror fields, not to its spatial character. Most impor-
tantly, we need to conduct the same analysis between
many different pairs of scenarios. We have found sim-
ilar results when scaling B2 to A2, and when scaling
a “business as usual’ scenario from any of the two
SRES scenarios. Additionally, and more interestingly,
we need to study the validity of scaling for those sce-
narios that are characterised by spatially heterogeneous
emissions (sulfate aerosols). Scaling among these will
undoubtedly require more complex forms of statistical
estimation than the simple linear method that worked
so well in this instance.

The goal of this work is ultimately to optimize the
use of expensive computer experiments by substitut-
ing scaled projections (and corresponding measures of
uncertainty) to actual AOGCMs’ runs. We think how-
ever that this will require some action “upstream”, in
the form of optimal design of computer experiments
that effectively explores the space of alternative scenar-
ios, and predicated on which interpolation by statistical
means will perform at its best.
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Figure 1: Signal of temperature change, winter
(DJF) season: A2 scenario, B2 scenario, A2 scaled
from B2, error between scaled A2 and true A2, di-
vided by a measure of natural variability computed
at each gridpoint separately on the basis of an all-
forcings, present-day climate PCM run.
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Figure 2: Signal of % precipitation change, spring
(MAM) season: A2 scenario, B2 scenario, A2 scaled
from B2, error between scaled A2 and true A2, di-
vided by a measure of natural variability computed
at each gridpoint separately on the basis of an all-
forcings, present-day climate PCM run.

Figure 3: The 32 regions from Ruosteenoia et al.
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Figure 5: Scatterplot representation (one for each
season) of scaled vs. true % precipitation change for
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Figure 6: The tree structure of the clustering based
on climatology records at each gridpoint. Different
size clusters are obtained by ”cutting” the tree struc-
ture at different heights, the extremes being a cut at
the very top, returning a single cluster containing all
the gridpoints, and a cut at the very bottom, return-
img as many single-occupancy clusters as there are

gridpoints.
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Figure 7: 22 land regions derived by climatology-
based clustering.
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Figure 8: Scatterplot representation (one for each
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the 22 land regions based on clustering gridpoints ac-

cording to climatology.
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Figure 9: Scatterplot representation (one for each

season) of scaled vs.

true % precipitation change

for the 22 land regions based on clustering gridpoints
according to climatology.
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Figure 10: True and simulated error fields for winter
(DJF) scaling of temperature change. The true field
is the last of the first row.
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Figure 11: True and simulated error fields for spring
(MAM) scaling of % precipitation change. The true
field is the first of the second row.
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Figure 12: Distribution (across regions) of the
standard deviation of 100 simulated (and averaged
over each region) error fields (AT). Left column
plots pertain to the regionalisation of Ruosteenoia
(2003), right column to the regionalisation derived
by climatology-based clustering. Left to right boxplots
correspond to finer to coarser spatial resolutions for
the regionalisation. The number of regions in the 6
bozplots of the left column is 1792, 3155, 550, 236,
76, 18. The number of regions in the 6 boxplots of
the right column is 2176, 2117, 530, 171, 58, 8.
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Figure 13: Distribution (across regions) of the stan-
dard deviation of 100 simulated (and averaged over
each region) error fields (% AP). Left column
plots pertain to the regionalisation of Ruosteenoia
(2003), right column to the regionalisation derived
by climatology-based clustering. Left to right bozplots
correspond to finer to coarser spatial resolutions for
the regionalisation. The number of regions in the 6
boxplots of the left column is 1792, 3155, 550, 236,
76, 18. The number of regions in the 6 boxplots of
the right column is 2176, 2117, 530, 171, 58, 8.
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| season | measure | 32 regions | 128 regions | 444 regions | 1370 regions | 4006 regions |
DJF R? 0.98 0.97 0.96 0.96 0.96

DJF RMSE 0.31 0.38 0.48 0.50 0.49
MAM | R? 0.92 0.93 0.92 0.93 0.93
MAM | RMSE 0.38 0.40 0.42 0.41 0.41

JJA R? 0.95 0.94 0.92 0.91 0.90

JJA RMSE 0.17 0.23 0.27 0.29 0.32
SON R? 0.96 0.94 0.92 0.92 0.93
SON RMSE 0.23 0.32 0.37 0.39 0.38

| season | measure | 32 regions | 128 regions | 444 regions | 1370 regions | 4006 regions |
DJF R? 0.80 0.72 0.73 0.72 0.69
DJF RMSE 8.65 12.22 13.30 14.85 15.24
MAM | R? 0.96 0.74 0.63 0.50 0.47
MAM | RMSE 3.29 9.86 14.23 18.93 18.94
JJA R? 0.91 0.82 0.76 0.67 0.66
JJA RMSE 6.03 10.42 17.31 24.10 19.62
SON R? 0.78 0.75 0.74 0.61 0.57
SON RMSE 10.63 13.15 14.99 20.90 19.48
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| season | measure | 22 regions | 60 regions | 120 regions | 240 regions | 450 regions | 1000 regions | 1400 regions |

DJF R? 0.97 0.97 0.96 0.96 0.95 0.95 0.94
DJF RMSE 0.44 0.44 0.48 0.53 0.56 0.60 0.61
MAM | R? 0.95 0.96 0.96 0.94 0.93 0.92 0.91
MAM | RMSE 0.34 0.33 0.35 0.42 0.45 0.50 0.53
JJA R? 0.94 0.93 0.94 0.93 0.92 0.92 0.91
JJA RMSE 0.16 0.18 0.20 0.21 0.24 0.26 0.28
SON R? 0.96 0.95 0.94 0.92 0.91 0.91 0.90
SON RMSE 0.26 0.30 0.35 0.39 0.43 0.44 0.46
| season | measure | 22 regions | 60 regions | 120 regions | 240 regions | 450 regions | 1000 regions | 1400 regions |
DJF R? 0.85 0.75 0.73 0.71 0.70 0.62 0.60
DJF RMSE 7.94 11.77 13.68 17.03 18.20 22.40 22.83
MAM | R? 0.95 0.85 0.81 0.76 0.70 0.61 0.51
MAM | RMSE 3.84 7.47 9.80 11.06 14.10 19.91 24.22
JJA R? 0.80 0.84 0.82 0.75 0.57 0.63 0.58
JJA RMSE 6.44 8.90 11.73 14.63 20.60 26.05 29.16
SON R? 0.75 0.75 0.77 0.68 0.66 0.56 0.5
SON RMSE 9.97 14.06 15.81 17.56 19.97 29.53 32.02
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