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1. INTRODUCTION

There has been a rapid increase in the number of
locations providing air quality forecasts over the
past decade. In the early 1990’s, only a handful of
locations, primarily in California, issued routine air
quality forecasts. At the current time, over 300
cities and metropolitan areas issued daily forecasts
(www.epa.gov/airnow/) (Figure 1). In addition to
providing the basis for public health warnings, air
quality forecasts are used for episodic emissions
control programs. Many cities, have “Ozone Action
Days” where coordinated emissions reduction
programs are set into motion based on air quality
forecasts. The expanding need for air quality
forecasts coupled with improvements in numerical
chemical models and computational speed have
resulted in the development and deployment of
operational numerical air quality prediction models
(Mass et al, 2003; McHenry et al., 2003; McHenry et
al., 2000). In the summer of 2003, NOAA tested a
regional scale air quality forecast model
(http://www.nws.noaa.gov/ost/air_quality/index.htm).
In anticipation of the widespread use of numerical
models to provide air quality forecast guidance, this
paper discusses the needs of air quality forecasters
with respect to numerical model output. The unique
forecast issues posed by air quality require a
different set of forecast images than those
traditionally provided by  synoptic scale
meteorological models.

2. THE AIR QUALITY FORECAST PROBLEM

The air quality forecast parameters of current
interest are ozone (O3) and fine particulate matter
(PM25). O3 and, and a portion of PMz 5, are
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secondary pollutants formed by the interaction of
primary emissions, often termed precursors. For
example, motor vehicle exhaust contains both
hydrocarbons and oxides of nitrogen that combine
to form Osz. Both the emissions of precursors and
the production rate of secondary pollutants are
sensitive to meteorological factors. In order to
interpret and analyze air quality model output,
forecasters will need to analyze both the air quality
model output as well as its underlying
meteorological fields. As a result, integrated images
from both the meteorology and chemistry models
must be provided to the forecasters.

For air quality forecasting, there are a set of
unique recurring issues that can serve as the
framework for selecting the optimal set of model
images. These issues include: (1) Persistence of
the forecast parameters; (2) Transport of pollutants
on local and regional scales; (3) Depth and
evolution of the layer within which the pollutants are
mixed; (4) Photo-chemical processes occurring
within the mixed layer; (5) Variations in
concentrations driven by small-scale processes;
and, (6) Timing of the forecasts. Each of these
issues and the implications for forecast guidance is
addressed below.

Both O3 and PM, s have lifetimes on the order
of days. As a result, persistence of concentrations
is a major factor in any forecast. In the mid-Atlantic,
peak O3 concentrations have an auto-correlation of
0.5-0.6 with a lag of one day (Ryan et al., 2000).
Persistence is often an accurate 24-hour forecast.
The lifetime of the pollutants of interest is sufficiently
long that transport of pollutants and precursors on
both local and regional scales is important
(Dickerson, Doddridge and Rhoads, 1995; Ryan et
al., 1998; Knapp et al., 1998). Information on the
movement of pollutants and current concentrations
is a forecast priority. The sources of pollutant
emissions are at or near the surface and the
transformation and production of secondary
pollutants occur primarily in the well-mixed
boundary layer. To the extent that boundary layer



depth is reduced, for example, by warm air
advection, concentrations of pollutants will rise.
Photochemical processes produce Os;, and a
fraction of PM>s. Forecasters need to know the
extent of UV radiation reaching the near surface
layer. That need, in turn, requires knowledge of
cloud cover and optical thickness. Although
regional scale concentrations of O3 and PMz5 set
the daily baseline of pollutant concentrations, it is
also true that large variation in peak levels occur on
the order of 10’s of km. Local scale processes, for
example, land and sea breeze, are often critical
forecast issues. Finally, because a key use of the
forecasts is to initiate voluntary pollution control
programs, the forecasts must be issued at a long
lead-time. Typically, the forecasts are issued at
1600-2000 UTC and are valid the following day.

3. AIR QUALITY FORECAST IMAGES

With the critical forecast issues noted above in
mind, a framework containing a subset of key
elements that can be utilized in the 4-panel chart is
proposed (Figure 2).

The most important panel (top left) will be the
air quality forecast itself, valid on the succeeding
day. Air quality health standards and, by reference,
the air quality forecasts, are based on a peak
concentration at any location within a forecast area.
For O3, the maximum 8-hour average is the forecast
parameter; while for PM 5 a daily (24 hour) average
is the standard. The forecast image must provide a
measure of peak concentrations. An example from
the NOAA experimental air quality forecast model is
provided in Figure 3. While not shown here,
additional images related to forecast concentrations
should also be available (Table 1). The most
important of these are hourly loops and changes in
concentration from the previous forecast run. While
air quality forecast models cannot reasonably be
expected to diagnose peak concentrations on the
very fine scale (10’s of km) at which they occur in
nature, experienced forecasters with knowledge of
local emissions patterns, can often deduce the
occurrence of extreme local concentrations based
on the interplay of plume placement and emissions.
A loop, showing the movement and evolution of the
high pollutant plume is therefore of great utility.
Trends in pollutant forecasts from run to run
(lagged-average forecasts, or “d(prog)/dt) may also
provide useful information to forecasters although
this assumption requires corroborative research
(Hamill, 2003).

Because air quality forecast models are
complex, containing a number of sub-models for
emissions, model performance and bias will be
significant issues. Experience with numerical air
quality models used for pollution reduction strategy

development has shown that systematic biases are
common. Forecasters will benefit from continually
updated model bias information similar to what is
currently provided for meteorological models (e.g.,
http://www.hpc.ncep.noaa.gov/html/model2.shtml).
Ideally, this information would be both short term,
analyzing performance on the synoptic scale (2-3
days), and longer term (weeks, or seasons) to
provide more systematic bias measures. The
limitation of this approach is that the forecast model
will likely not be “frozen” in any one form for some
time.

As noted above, O3 and PM25 have relatively
long lifetimes, particularly with respect to the 2-5
day synoptic cycle. As a result, knowledge of
current air quality conditions, particularly upwind of
a forecast area, is critical. Currently, observations
of pollutant concentrations, in near real-time, are
provided by the EPA (http://www.epa.gov/airnow).
For efficient analysis of forecast information, it is
imperative that this information be available
concurrently with the forecast. The type of
observational data presented will also depend on
the forecast parameter of interest. O3 observations
have a strong diurnal cycle, with the exception of
high elevation sites that remain above the nocturnal
boundary layer, which constrains the useful period
of observed concentrations (Figure 4). In the
nighttime hours, O3 trapped beneath the nocturnal
inversion is destroyed upon deposition to the
surface. With no ultra-violet (UV) radiation available
to produce more O3, concentrations near the
surface decline rapidly in the overnight hours.
Above the nocturnal boundary layer, however, O3 is
approximately conserved. Therefore, surface based
monitors fail to observe the overnight “reservoir” of
Os. By late morning, as the surface inversion
breaks, O3 is mixed downward, leading to rapid
rises in concentrations reflecting the regional O3
load (Figure 5). A diagnosis of “true” persistence
O3, can only be made after the surface based
inversion breaks, often 1400-1600 UTC. In addition
to informing forecasters on persistence issues,
observations made ~ 1600 UTC will allow
verification of short-range model results. However,
numerical Oz models tend to show poor
performance in the overnight hours and some
uncertainty related to model initialization (“spin up”)
may be a factor limiting the utility of this information.

Assuming observed concentrations are
available in near real-time, a combination of current
concentrations and trajectory model results can
provide information on the magnitude of transported
pollutants.  Trajectory models are currently run
independently of the air quality model. An example
of standard output from the NOAA-ARL HYSPLIT
model, is shown in Figure 6 (Draxler and Rolph,
2003; Rolph, 2003). Ideally, a back trajectory
model would be integrated with the meteorological
model driving the chemistry model and real-time



chemistry data. A mock-up of such an image, using
an O3 forecast from the NOAA forecast model, is
provided in Figure 7. There are problems
determining regional scale transport of pollutants
using back trajectories. First, pollutant
concentrations are observed only at the surface.
The assumption that surface observations near mid-
day reflect a well mixed boundary layer may not
always be correct. Chemical transformations will
occur along the air parcel path, particularly for
PM.s, so that only qualitative conclusions can be
reached with respect to concentrations at the point
of trajectory termination. It is possible to incorporate
chemical transformation calculations into the back
trajectory model (Stein et al, 2000). Finally, back
trajectories lose accuracy near the surface, where
the air quality monitors are located, due to vertical
wind shear and turbulence. While back trajectories
are more accurate aloft, there are no systematic
measurements of air quality above the surface so
that verification of model forecasts above the
surface is not possible.

The depth of the mixed layer can have a
profound effect on pollutant concentrations -
particularly wintertime PM»s. Most forecast models
provide some measure of the depth of the boundary
layer. An example is provided in Figure 8.
Determination of boundary layer height is made
difficult, however, by the lack of a standard
approach for defining its extent (Seibert et al.,
2000). Even within the current set of numerical
models, there can be systematic differences in
retrieved PBL height. Assuming the use of a
consistent and accurate boundary layer depth
algorithm, an image from the time of maximum
boundary layer height (1800-2100 UTC) will be of
great usefulness. However, it is also true that the
temporal evolution of the boundary layer is often
more important than the maximum height reached in
the afternoon hours. For example, PMas
concentrations rise quickly in the morning rush hour.
If the surface based inversion persists well into the
afternoon hours, averaged PM, s concentrations will
be quite high even though concentrations may
decrease briefly during the time of maximum mixing
depth. A time series of mixing depth will be useful
for diagnosing temporal inversion strength. A
clickable map with local potential temperature
profiles is useful (Figure 9) although more
sophisticated algorithms can be utilized (Table 1).

Combining mixing depth and wind speed
information, usually termed a ventilation index, is a
frequently used method for ascertaining the extent
of stagnation and trapping of pollutants. For PM2.5
forecasts, ventilation index information is often of
primary importance to the forecast. The ventilations
parameter is usually a simple product of wind speed
and mixing depth (mzs'1). The standard ventilation
index is limited by its sensitivity to variations in
boundary layer depth. An alternative, developed for

use in the Puget Sound, uses the Brunt-Vaisala
frequency summed over the lowest layers and over
time. (Figure 10).

Forecasts of moisture content are critical for air
quality forecasting. To the extent that moisture
levels are sufficient to form clouds, it can affect
photochemical production of pollutants. Increases
in low-level moisture can accelerate gas to particle
conversions, e.g., SO, conversion to sulfate, and
increase PM»,5 concentrations. Cloud cover
forecasts require additional refinement for use in air
quality forecasts. Experience with O; forecasting
has shown that thin cirrus and shallow cumulus
typically have limited effects on concentrations.
Optically thick clouds, e.g. stratiform clouds, or
clouds that reflect deep vertical mixing, e.g.,
towering cumulus, can modulate pollutant
concentrations. Any measure of cloud cover must
therefore take into account cloud depth and optical
thickness. This can be accomplished by showing
cloud cover at several layers (Figure 11), downward
UV flux at the surface (Figure 12) or a time series of
RH cross-sections (Figure 13). Low-level moisture
and advection, critical for PM, 5 forecasts, can also
be displayed in a number of ways including wind
flags and 1000-850 mb layer mean RH (Figure 14).

4. PROPOSED SUITE OF PRODUCTS

Proposed suites of four panel charts are given
for O3 (Figure 15) and PM_s (Figure 16). A set of
time series panels is provided in Figure 17 and a
table of possible additional images is given (Table
1). The four panel charts represent a sub-set of key
images that allow air quality forecasters to quickly
orient themselves to the critical forecast questions
for that day. The additional images in Table 1 would
then be of use for more detailed analysis.

5. DISCUSSION AND CONCLUSION

Air quality forecasting, by the nature of the
phenomena, requires a specific set of forecast
images of both the chemical-transport model and its
underlying meteorological model. The critical
forecast issues for air quality typically include, the
forecast of the pollutant of interest, persistence of
the pollutant, magnitude of expected photochemical
activity (cloud cover), boundary layer depth,
moisture gradients in the boundary layer, transport
processes above the nocturnal boundary and near-
surface winds.

A proposed suite of forecast images, displayed
as a standard four panel chart, will address these
issues by providing forecasters with information on
the key processes noted above. In addition to
providing a check on the forecast model



consistency, for example, Oz fields should reflect
cloud cover effects, these panels will allow
forecasters to effectively add expert analysis to the
forecast. This is particularly valuable in the initial
years of numerical model deployment. The
forecasting of air quality parameters is a very
difficult prospect due the large uncertainty of critical
model inputs (e.g., emissions, radiative effects) and
the scale of variations (typically meso-y scale)
observed in the forecasted parameters. Model
performance is not expected to be as accurate as
current meteorological models and is likely to be
more on the magnitude of quantitative precipitation
forecasts (QPF). Experienced forecasters,
however, will be able to deduce the effect on
observed concentrations of certain meteorological
factors. For example, re-circulation along the land-
sea boundary near large emission sources can
result in high concentrations affecting certain key
monitors. Knowing that the forecast models predict
the circulation will occur, forecasters can accurately
“correct” the model pollutant forecast for that
location.

Eventually, air quality forecast models will
achieve a consistency and reliabilty so that
accurate model output statistics (MOS) forecasts
can be derived. These products, coupled with
forecast images such as those proposed in this
paper, will be a major step toward increases in
forecast accuracy. Even without a long term
“frozen” model, effective MOS products can be
developed (Wilson and Vallee, 2003)
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Table 1. Air quality and meteorological model images useful to operational air quality forecasters.

(a) Model Pollutant Forecasts

Maximum concentrations (time averages vary with pollutant of interest)

Hourly loop of concentrations

Lagged forecasts (12-24 hours) valid at the same time.

Change in pollutant forecast over past model run (current forecast- 24 h prior forecast).

Model performance and bias over short time scale (24-72 h).

Model performance and bias over long time scale (3-14 days).

Concentrations of key precursors (NOy, SO3)

Forecasts of pollutant concentrations above the near surface layer, particularly in the “transport” layers
above the nocturnal boundary layer.

(b) Persistence Measures

Near real time concentrations (1600 UTC).

Near real time concentrations with back trajectory forecast.

Short term forecast skill (forecast (~ 4 h) — observed concentrations).

Change in observed concentrations of the pollutant over preceding 24-48 hours.

(c) Boundary Layer Depth

Model derived planetary boundary layer height

Ventilation index (a variety of forms possible) coupled with wind flags at predetermined levels

Temperature and wind fields — temperature advection (925 mb, 850 mb)

Change in temperature (AT) at selected levels (925 mb, 850 mb)

Vertical profile time series at specific monitors: potential temperature, virtual potential temperature, PBL
height.

(d) Moisture
Layer averaged relative humidity: 1000-850 mb, or similar levels.
Advection of relative humidity within boundary layer (e.g., 925 mb) or averaged over a layer.
Vertical profile time series at specific monitors: relative humidity.
Change in relative humidity over 12-24 h intervals at surface and aloft.

(e) Photochemistry
Cloud cover — disaggregated by: height and thickness
Short wave UV flux at the surface
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Figure 1. Forecast map from the EPA AIRNow website (http://www.epa.gov/airnow) showing locations
that provide routine daily air quality forecasts.
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Figure 2. Proposed framework for the air quality four-panel chart.
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Figure 3. Peak 1-hour O3 forecast from the NOAA experimental air quality forecast model system
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Figure 4. Hourly O3z concentrations at Fair Hill, Maryland on June 24, 1997.
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Figure 10. Ventilation index determined from a layer average Brunt-Vaisala frequency for 1200
UTC, October 21, 2003. Figure courtesy of the Northwest Regional Modeling Consortium
(http://www.atmos.washington.edu/mmb5rt/).
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layer height at 1800 UTC (the panel is from the AFWA MM5 forecast for May 6, 2003); (c) O3 concentrations
for 1600 UTC with three- layer back trajectories overlaid (as in Figure 7); (d) Forecast of downward short
wave radiation flux (units of W/m?) at the surface (the image is from the NCEP Eta model for 1800 UTC
October 21, 2003).
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Figure 16. Example of proposed four panel air quality forecast chart for PM; s forecasting. (a) 24-
hour PM; 5 concentrations (no image currently available) (b) Ventilation index using Brunt-Vaisala frequency
(the panel is from the University of Washington MM5 forecast for October 21, 2003, figure is courtesy of the
Northwest Regional Modeling Consortium  (http://www.atmos.washington.edu/mmb5rt/); (c) PMazs
concentrations for 1700 UTC (the panel contains data from continuous PM; s monitors and is courtesy of the
USEPA and Sonoma Technology. In practice, back trajectories would be overlaid as in Figure 15(c)); (d)
Forecast of layer average relative humidity and 925 mb winds (as in Figure 14).
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Figure 17. Example of proposed local forecast panels. (a) Clickable map with station locations
(Figure courtesy of NCEP EMC: http://wwwt.emc.ncep.noaa.gov/immb/etameteograms/); (b) Vertical time
series (height is given in millibars) of potential temperature (degrees K) for Philadelphia International Airport
(PHL) from the NCEP Eta-12 forecast initialized at 1200 UTC on August 21, 2003; (c) as in (b) but for wind
(in ms™); (d) as in (b) but for relative humidity (in percent).






