
4.13 OBJECT-ORIENTED ENTERPRISE ARCHITECTURES
USING INDUSTRY-STANDARD METHODOLOGY

Bruce R. Carter, CCM *
Rob Byrd, Chief Operational Architect

SI International Inc., Colorado Springs, Colorado
Technology Partner with IBM Rational

1. INTRODUCTION

The National Oceanic and Atmospheric
Administration (NOAA) has undertaken, domain wide,
development of enterprise architectures for
accomplishing the various objectives and strategies
relating to the seven strategic mission goals identified in
the NOAA Strategic Plan (NOAA 2003). Architectures
provide different ways to examine the mission and
execution of any business or enterprise. They can
describe organizational processes for reengineering
purposes or for providing new technology and training.
Architectures also can model doctrinal and policy
implications as well as assist in the definition of the
operational and system technical requirements that
allow accomplishment of operational missions in an
effective and efficient manner.

Vice Admiral Conrad Lautenbacher, U.S. Navy
(Retired), Undersecretary of Commerce for Oceans and
Atmosphere, and NOAA Administrator, has expressed it
this way (David 2002)

 “We have to build this global architecture
for observing the Earth. Part of that is to
build the data protocols and formats…a way
to move data around that will allow
maximum use by the scientific community.
That’s one of my pet rocks, so to speak,….”
As presented by Rob Mairs, the National

Environmental Satellite, Data and Information Service’s
Chief Information Officer, in a July 30, 2002 NOAA
Observation System Architecture Team Overview, an
enterprise’s architecture can be defined in different
ways. The Institute of Electrical and Electronics
Engineers defines “architecture” as “the structure of
components, their relationships, and the principles and
guidelines governing their design and evolution over
time.” Mr. Mairs also noted that the Department of
Defense (DoD), in the Command, Control,
Communications, Computers, Intelligence, Surveillance
and Reconnaissance (C4ISR) Architecture Framework
(CAF), defines an architecture thusly (CAF 1997):

“An architecture description is a
representation, as of a current or future
point in time, of a defined “domain” in terms
of its component parts, what those parts do,
how the parts relate to each other, and the

__

* Corresponding author address: Bruce R. Carter,
SI International Engineering Inc., 1631 S. Murray Blvd.,
Colorado Springs, CO 80916-4552;
e-mail: bruce.carter@si-intl.com

rules and constraints under which the parts
function.”
The current DoD Architecture Framework has

evolved from the CAF and formally states the
Department’s vision for military architectures. However,
the benefits of these forward-thinking policies have not
yet been fully realized in the DoD. Nearly all DoD
architectures are based on the structured analysis
(functional decomposition) methodology. Over the last
few decades, mainly in response to the exigencies of
Cold War planning and operations, significant
investments have been made using this approach to
create static architectures of “as is” and “to be”
command and control environments, with little new
insight attained. The resulting operational views (i.e.,
what are supposed to be the war fighter's perspective
on the enterprise) tend to be foreign to the operational
community, and the artifacts contribute little towards
gaining new perspective or understanding regarding the
value of nonmateriel solutions (e.g., doctrine, tactics, or
organizational changes). Thus, many DoD operational
architectures have yet to prove especially useful in
supporting the development of new operational
concepts or the rapid fielding (or adaptation) of new
technology needed for enterprise integration.

2. A NEW APPROACH

A proven object-oriented (OO), Unified Modeling
Language (UML)-based architecture and requirements
management method has been developed by
SI International, initially for DoD operational
architectures, that uses industry-best practices coupled
with leading-edge, web-based hosting and configuration
management tools. Our method includes a
collaborative, distributed environment where operational
concepts can be integrated with mission requirements
under a clearly defined structure that enforces horizontal
integration, architecture synchronization and complete
traceability to NOAA doctrine. Our method complies with
all Clinger-Cohen Act mandates, wherein lie the
fundamental requirements for development of
architectures by federal enterprises. The result is a
decision support system that helps operators better
understand and communicate requirements, providing
synchronization across the NOAA enterprise and
enabling effective change management using industry
best practices.

2.1 Understanding Requirements

A successful requirements management process is
one that involves operators and developers in an
iterative and collaborative process. Because it is an
object-oriented method, the SI International approach
allows complex problems to be broken down into
understandable, ‘plugable’ and manageable parts. This
brings to mind the old adage, “How do you eat an
elephant?...one bite at a time.” The use of UML ensures
the unambiguous articulation of desired capability
(behaviors, features, and functions) in a manner that
facilitates complete understanding by all stakeholders.
The result is an operational architecture that can be
readily reviewed, changed and evolved over time. The
process allows new technology to influence operational
processes such as doctrine, tactics and organizational
change. Using an OO methodology, operational
redundancy is easier to identify and deal with.
Developmental priorities and resource allocation can be
easily related to system capability and vetted by the
operational community.

2.2 Architecture Synchronization

Object-oriented architectures are “plug and play,”
capability-based modules allowing reusable and
adaptable core objects. This feature, when properly
implemented and administered, ensures
synchronization of architectures across the enterprise
and also places great emphasis and dependency on
interfaces, helping to move the focus from platforms to
networks. Our architectures provide comprehensive
traceability from required system capability to doctrine,
mission requirements and external interfaces. An
exclusive feature of the SI International approach is the
ability to provide hyperlinks (via a Hypertext Markup
Language [HTML] version of the UML architecture)
directly to any HTML-published requirements document.
Another software tool, when used as a requirements
database, enables linkage between requirements
documentation and specific use cases∗ in the UML
architecture.

2.3 Enterprise Tools Integration

A primary problem encountered when selecting
“best of breed” applications from various vendors for
implementing enterprise solutions can be application
integration. For example, before a new release of one
application can be used, other applications must be

∗ Use Case (class) A description of system behavior, in
terms of sequences of actions. A use case should yield
an observable result of value to an actor. A use case
contains all alternate flows of events related to
producing the “observable result of value.” More
formally, a use case defines a set of use-case instances
or scenarios through specification of a sequence of
actions, including variants, that a system (or other
entity) can perform, interacting with actors of the
system.

tested to ensure they are not impacted by the new
release. In many situations, this can have a profound
rippling effect while attempting to spirally improve
enterprise processes. This places the enterprise
application user in an unnecessary role of tool
integrator, whereas one would much rather focus on
important enterprise issues such as enterprise modeling
and change management.

2.4 Change Management

An OO architecture approach provides an

environment that accommodates change in a cost-
effective manner. Object-oriented architectures support
the continuous insertion of emerging technology and
spiral development while facilitating interoperability. Our
process allows a free design space for follow-on
developers to be innovative in satisfying operational
needs. An OO architecture is equally valuable as an
instrument to quickly redirect ongoing development as
missions, operational concepts, and technology change.
Our object-oriented architectures create an engineering
environment where development occurs at a lower level
with smaller and more flexible components, making the
entire development process more adaptive while
facilitating interoperability through architecture and
component reuse.

Many legacy systems will be part of any weather-
support enterprise long into the future. Our architecture
approach recognizes this fact and provides the blueprint
or vision that accommodates integrated and
synchronized project-level development to proceed
coherently in support of the overall program. The key
features of our synchronized architecture solution are
described in Table 1 below, along with how a weather
enterprise can benefit from each feature.

The contents of this paper provide exposition of a
model (Figure 1) whose methodology enables an
enterprise to capture mission-wide evolving needs in
both comprehensive and comprehensible fashion, and
supports a spiral development process (Figure 2). The
product of this methodology’s use is a quantitative
capability to assess materiel solutions across the entire
lifecycle of a development effort from vision to
requirements to architecture and design to
implementation and test, including explicit formal
traceabilities between related artifacts. A quantitative
capability also results to assess nonmateriel solutions,
changes in doctrine, changes in procedures,
reorganizations for eliminating unnecessary duplications
in effort, redefinition of roles and responsibilities,
training, personnel management, and so on. The key to
an architecture-centric methodology such described
here is avoiding a stovepipe-solution approach, and
concentrating instead on creating a capabilities and
effects-based acquisition process. It is this change in
the acquisition paradigm that leads to fundamental
improvement.

For any given weather-support mission area, use of
UML and related tools: (1) allow for a complete
traceability from vision to requirements to architecture,
and additionally from architecture to solution; (2) provide

a seamless integration from mission architecture to
operational requirements to system architecture;
(3) foster integration of requirements with budgeting and
acquisition; and (4) enhance revolutionary program
management approaches.
For a given mission area, the vision, mission and
objectives are defined. The objectives are stated in
terms of observable “results of value” to be obtained
without regard to any system or concept of operation.
Various mission-level architectures are constructed
based on combinations of principal collection,
processing, evaluation, dissemination and archival
systems; information–technology support systems;
performance requirements and operations concepts.

Mission architectures have different support structures
associated with them. The cells in the mission
architecture are represented by UML use cases in a
mission-level view. Because the use cases represent
“reusable” results of value, the operations analyst can
begin to explore the cross-mission nature of operations
and capability. We call this capability, along with the
required resources (i.e., facilities and tools), the decision
support system where the operational Blueprints are
analyzed, managed and stored. The decision support
system provides a repeatable process along with tools
to perform trade studies across the operational,
technical, financial and programmatic dimensions of the
enterprise architectures.

Table 1: Key Features and Benefits of our Synchronized Architecture Solution

Key Features of Our Approach Enterprise Benefits
Innovative application of Object-Oriented Systems Engineering Method:
9 Brings operator into the solution space
9 Operators see opportunities never seen before
9 No more "trust me" cards
9 Binds Operational View to Systems View
9 Indispensable management tool, not “shelf ware”
9 Detailed, comprehensive definition of tasks to move from "as is" to "to

be," facilitating prioritization and management of the development
9 Model becomes the system — evolves to strategic tool
9 Common "language" that can be understood by all, from executive

management to systems developers

9 Total visibility, understanding,
and substantive control of
systems development through
doctrine and vision

State-of-the-art modeling / architecture development tools:
9 Accommodates new technologies (especially more sophisticated code

generators as they evolve)
9 Well suited for spiral evolution
9 Configuration management
9 Enterprise and systems agility in a world of changing missions
9 Outcome is a nonproprietary model format
9 Model itself in UML and not perishable
9 Can relate back to existing systems and previous enterprise modeling,

including Integration Definition for Functional Modeling (IDEF)

9 Provides the ability to
continuously and seamlessly
upgrade technology and
accommodate mission changes

Seamless, integrated end-to-end solution / no disconnects:
9 Airtight budget protection
9 Thought leadership with sponsors/clients and interfacing programs
9 Return on investment relationship
9 Eliminates redundancy
9 Leverages reuse
9 Test plans and training plans flow out of it

9 Maintains total traceability of all
enterprise activities, including
every system function, to
specific customer requirements,
mission requirements, or budget
items

Distributed, secure, collaborative environment for developing and maintaining
architectures:
9 Allows global participation of stakeholders
9 Ability for sponsors/clients to meaningfully understand process/system
9 Complete security of data transfers

9 Allows global participation of
stakeholders with completely
secure data transfers.

Common Processes Ops &
 Support

Common Operating Environment
Infra

str
uctu

re

Enterprise Data Base
Share

d D
ata

Networking Product Command & User
Generation Control Interface

Common Svc
s

Weather
& Water

Commerce
& Transportation

Climate Others...

ProcessesProcesses

InfrastructureInfrastructure

ApplicationsApplications

Common Processes Ops &
 Support

Common Operating Environment
Infra

str
uctu

re

Enterprise Data Base
Share

d D
ata

Networking Product Command & User
Generation Control Interface

Common Svc
s

Weather
& Water

Commerce
& Transportation

Climate Others...

Common Processes Ops &
 Support

Common Operating Environment
Infra

str
uctu

re

Enterprise Data Base
Share

d D
ata

Networking Product Command & User
Generation Control Interface

Common Svc
s

Weather
& Water

Commerce
& Transportation

Climate Others...

ProcessesProcesses

InfrastructureInfrastructure

ApplicationsApplications

ProcessesProcesses

InfrastructureInfrastructure

ApplicationsApplications

Figure 1: The Model Establishes the Enterprise Architecture’s Foundation

Figure 2: The Enterprise Architecture process supports and implements spiral development and evolutionary
acquisition

Each element of the architecture matrix results in a
mission view or relevant UML diagrams. The sum of
these views or diagrams represents the system-of-

systems, that is a multifunctional mission architecture.
The mission architecture comprising views for systems,
concepts of operations (CONOPS), requirements,

9 Analysis and Design procedures, and support services is the foundation and
provides guidance for operational architectures. In
addition to integrating the elements of the architecture
such as requirements, operations concepts and support
services, the Mission Capability Package also links
budget to elements of the architecture. This allows for
“airtight” traceability from mission to funding. As the
mission capability is implemented, the cost of each
element can be monitored and assessed in the context
of operations.

9 Implement and Deploy
9 Test and Evaluate
The waterfall approach tends to mask project risks

by erecting artificial milestones leading from one stage
to the next. Mistakes made eventually become
apparent, but usually only after it is too late to fix them
inexpensively. An alternative to the waterfall approach is
the iterative and incremental process (Figure 3). In this
approach, building on the work of Barry Boehm’s spiral
model (Boehm 1998), the identification of risks to a
project is forced early in the life cycle, when it is
possible to attack and react to them in a timely manner.

Our blueprint definition methodology can be
described as a systems development process. This
approach is also an instance of the Rational Unified
Process® (RUP®), a process framework used for
creating systems development processes based on
successful industry philosophies and practices. The
approach is also a proven methodology for developing
and representing operational and enterprise
architectures.

Figure 3: An Iterative and Incremental Process

3. RATIONAL UNIFIED PROCESS

A process has four roles (Booch 1995):
9 Provide guidance as to the order of a team’s

activities
9 Specify which artifacts should be developed

and when
9 Direct the tasks of individual developers, and

the team as a whole
9 Offer criteria for monitoring and measuring a

project’s products and activities
This approach is one of continuous discovery,

invention, and implementation, with iteration cycles
forcing the team to drive the project’s artifacts to closure
in a predictable and repeatable way. The iterative
approach uses a much more concrete measure of
progress--executable or set of executables passing the
tests assigned to it for the iteration.

The RUP® (Kruchten 1998) was developed by IBM
Rational Software to address the industry-wide need for
a process framework built on the collective experience
of thousands of successful development efforts. From
RUP®, a development organization can instantiate a
process employing proven development practices. Its
goal is to develop and maintain systems of high quality
in a repeatable, predictable fashion. RUP-SE® is a
variant of RUP® developed for system engineering
applications and provides the necessary requirements
management elements to describe systems and system
needs. The characteristics of RUP-SE® relevant to any
enterprise are discussed in the following paragraphs.

Developing enterprises iteratively addresses a
number of root causes of problems in enterprise
development:
9 Misunderstandings between various

stakeholders are made known early in the
project

9 Early user feedback is enabled, encouraging
elicitation of the actual requirements

The RUP® framework is based on six fundamental
best practices identified over time as those practices
that are likely to improve the probability of the
successful development and deployment of software
systems. As depicted in Figure 3, these six best
practices include:

9 High risk issues are more likely to be
addressed early in the project

9 Since iterative development yields a testable
executable at the end of each iteration, testing
is enabled very early in the project

9 Inconsistencies among various project artifacts
are detected early 9 Develop systems iteratively

9 Team workload can be managed more
successfully

9 Manage requirements
9 Use component-based architectures

9 Important lessons are learned early in the
project so they can be leveraged to continually
improve the process

9 Visually model software
9 Continuously verify quality
9 Control changes

3.1 Develop Enterprises Iteratively 9 Stakeholders can be given concrete evidence
of project status

Classic development processes follow a “waterfall”
life cycle, in which the project is said to be in one of the
following stages, each of which precedes the next:

3.2 Requirements and Change Management.
Requirements change—the larger and more

complex the project becomes, the more likely it will be 9 Requirements Analysis

that change is necessary. There are many reasons for
embracing change in a system, among them include:

9 The problem to be solved actually changes
during development

9 The customer changes their mind about what
is needed, perhaps because of feedback from
an iteration

9 It is found that some requirements are
incorrectly stated, or misunderstood -- often,
again, due to feedback

9 The external environment changes
9 An initial delivery of the new system has been

completed—it thus begins driving, however
insidiously, its own requirements

The classic approach to requirements management
is to resist the forces of change. The result of this action
in today’s complex development environments is simple:
the wrong system is developed. Change in a complex
system is continual; it must be accounted for from the
outset of the project and managed appropriately. Active
requirements management encompasses three
activities:
9 Eliciting, organizing and documenting the

system’s required functionality and constraints
9 Evaluating changes to these requirements and

assessing their impact
9 Tracking and documenting trade-offs and

decisions made about them
Requirements management is therefore much more

than just writing the requirements down. This practice
also offers a number of solutions to the root causes of
software development problems:
9 A disciplined approach is built into

requirements management
9 Communications are based on well-defined

requirements
9 Requirements can be prioritized, filtered,

traced, and queried upon
9 An objective assessment of functionality and

performance is possible
9 Inconsistencies are more easily detected

9 With suitable tool support, it is possible to

provide a repository for a system’s
requirements, the attributes of those
requirements, and traceability of each
requirement to others it influences

3.3 Use Component-Based Architectures

Each stakeholder for a project brings a different
agenda to that project. We should expect stakeholders
to have a different perspective on any given project.
Their views also change as time passes over the
project’s lifetime. The enterprise architecture is the most
important deliverable that can be used to cater to,
present to, and manage these different viewpoints.

An enterprise architecture encompasses the set of
significant decisions about these things:
9 The organization of the system

9 The selection of the structural elements and
their interfaces by which the system is
composed

9 The behavior of those structural elements, as
specified by the collaborations among them

9 The composition of these structural and
behavioral elements into progressively larger
subsystems

9 The architectural style that guides the
development of the architecture

The decisions about these aspects of a system are
made in consideration of many attributes that often
conflict—not only structure and behavior but also
attributes of usage, functionality, performance,
resilience, reuse, comprehensibility, economic and
technology constraints and trade-offs, and even
aesthetic concerns.

The importance of building resilient architectures
cannot be underestimated. Truly resilient architectures
enable economically significant degrees of reuse,
isolate hardware and software dependencies that may
be subject to change, and improve maintainability. In
systems as large and complex as those envisioned in
conjunction with NOAA, the economics are so large that
resilience in architecture very likely means the
difference between success and failure. The Common
Object Request Broker Architecture (CORBA) and Sun’s
Enterprise JavaBeans (EJB) are two of many examples
that offer conclusive proof that this kind of reuse is
practical and efficient, and offers reuse on a much larger
scale than previously was possible in the software
arena.

Coupled with the practice of developing systems
iteratively, using component-based architectures
involves the continual evolution of the architecture.
Iterations produce an implementation architecture that
can be measured, tested, and evaluated against the
system’s requirements. The result is a quantitative
milestone that permits repeated mitigation of the most
important project risks over time.

Using component-based architectures offers a
number of solutions to the root causes of system
development problems:
9 Components facilitate resilient architectures
9 Modularity enables a clear separation of

concerns among elements of a system that are
subject to change

9 Reuse is facilitated by leveraging standardized
frameworks (e.g., commercially available
components)

9 Components provide a natural basis for
configuration management

9 Visual modeling tools provide automation for
component-based development

3.4 Visually Model Systems

A model is a simplification of reality that completely
describes a system from a particular perspective.
Models aid in understanding the system and permit us
to better manage the system’s complexity. Modeling
helps the development team visualize the enterprise,

but it is also used to specify, document, and even
construct the structure and behavior of a system’s
architecture. When a standard modeling language such
as UML is used, communication becomes far less
ambiguous as the team learns to use the various
artifacts of the modeling language as a standard for
communicating concisely and precisely.

Visual modeling tools facilitate model management
by permitting various details to be hidden or revealed as
the modeler wishes. The modeler exposes the
architecture through the various views called for by the
modeling language, and tailors these views to enhance
clarity. The better modeling tools aid the development
team in maintaining consistency between many of a
system’s artifacts—its requirements, architecture,
designs, tests, and implementations.

When coupled with iterative development, visual
modeling improves the development team’s ability to
expose, communicate, and assess architectural
changes, and, again, keep them synchronized with
other project artifacts. Visual modeling offers a number
of solutions to the root causes of system development
problems:
9 Nonmodular and inflexible architectures are

exposed
9 Use cases and scenarios specify behavior with

much less uncertainty than traditional means
9 Models clearly capture system architecture and

design
9 Detail can be revealed or hidden as necessary
9 Unambiguous designs reveal their

inconsistencies more readily
9 Application quality is enhanced from the start

with good architecture and design
9 Visual modeling tools provide extensive

support for UML modeling and synchronization
with requirements, implementations, and other
project artifacts

3.5 Continuously Verify System Quality

As Figure 4 conceptually depicts, system problems
are often two or three orders of magnitude more
expensive to find and fix after system deployment. This
underscores dramatically the need to continuously
assess system quality with respect to all relevant quality
factors such as functionality, reliability, performance,
and usability.

Classic quality verification in system development
involves constructing the system first in its entirety, then
developing and exercising tests for the system.
Unfortunately, some development teams have decided
to employ iterative development techniques but have
neglected to include testing of the system at the end of
each iteration.

Continuous quality verification involves creating
tests and other quality gates for the system from the
beginning. System requirements and its design are used
as inputs. Resulting tests are exercised in the most
automated way possible, as frequently as possible, and
at least as part of the conclusion of each and every
iteration. Risks are reduced when the product is tested

at appropriate points in each iteration. If the product is
not tested, developers simply can never know
definitively whether any of those risks have been
corrected.

Figure 4: The Cost of Fixing System Problems

Over Time

Continuous quality verification offers a number of
solutions to the root causes of software development
problems:
9 Project status assessment is much more

objective; test results, not paper documents,
are evaluated

9 Objective test assessments expose
inconsistencies in requirements, design, and
implementations

9 Testing and verification are focused on areas
of highest risk, thereby increasing quality and
effectiveness

9 Defects are identified earlier, often significantly
reducing the cost of repair

9 Automated testing tools provide testing for
functionality, reliability, and performance

3.6 Control Changes to the Enterprise

Multiple developers and other contributors characterize
large system development efforts. They are organized
into many different teams, often at several different
sites, and they are tasked to work together on multiple
iterations, releases, products, and platforms. A
disciplined change control process is mandatory to
avoid the inevitable chaos that otherwise results.

Coordinating the activities of developers and teams
and the artifacts they generate involves establishing
repeatable workflows for managing changes to all
project artifacts. A byproduct of this coordination is
better resource allocation based on the project’s
priorities and risks as it actively manages the work on
those changes across iterations. Coordinating iterations
and releases involves establishing and releasing a
tested baseline at the completion of each iteration.
Maintaining traceability between the elements of each
release, as well as across multiple, parallel releases, is

essential for assessing and actively managing the
impact of change.

Controlling changes to the enterprise offers a
number of solutions to the root causes of development
problems:

9 The workflow of requirements change is
defined and repeatable

9 Change requests facilitate clear
communications

9 Isolated workspaces reduce interference
among team members working in parallel

9 Change rate statistics provide good metrics for
objectively assessing project status

9 Workspaces contain all artifacts, facilitating
consistency

9 Change propagation is assessable and
controlled

9 Changes can be maintained in a robust,
customizable tool or set of cooperating tools
available for that purpose

In summary, RUP® strongly supports many of the
principles already adopted and explained elsewhere in
this paper. RUP® also is a product whose artifacts can
be used to develop and document a living process for
the use of every developer and other contributor
involved in a system development effort. This process
will be tailored to extract the most efficiency and highest
quality from the development team. Such a process is
essential to the success of that effort.

4.0 RUP-SE®

RUP-SE® is a variant of RUP® developed for

system engineering applications with either or both of
the following characteristics:

9 Architecturally significant deployment issues
9 Concurrent hardware and/or software

development efforts
Certainly many of the architectures to be developed

for 21st century enterprises will frequently have both
these characteristics. However, many of the concepts in
RUP®, which was designed for pure software systems,
are completely applicable for the more sophisticated
environments addressed by RUP-SE®.

The problem of delivering a desired system is a
superset of the problem of delivering the desired
software, in general. Systems engineering addresses a
broader set of requirements than are normally
addressed in software efforts. Even so, almost all
software development efforts contain some elements of
the system problem. RUP-SE addresses the larger
problem of system specification, analysis, design, and
development.

A major discipline addressed by RUP-SE is
business modeling. The discipline is not fundamentally
changed from its exposition and use in RUP, but its
context is the larger system that is a superset of the
software.

RUP-SE also addresses the architecture of the
entire system as it evolves from the business
architecture or operations architecture. As the
architecture is developed, it evolves from a general, low-

detail specification to a much more specific, detailed
specification. We can describe these in terms of levels,
such as business, analysis, design or implementation.

RUP-SE® also makes a clear distinction between
allocated and derived requirements. A requirement is
allocated if a system requirement is assigned to an
architectural element. A requirement is derived if it is
determined by studying how the architectural element
collaborates with others to meet a system requirement.

The use of derived requirements for systems
collaborating to carry out use cases (valuable
functionality) is called logical decomposition. Similarly,
determining subsystems by allocation is called
functional decomposition. As before, experience has
shown that functional decomposition is inferior to logical
decomposition. Logical decomposition is essential for
the development of quality systems.

One aspect of the systems problem is to specify a
set of system use cases and supplementary
requirements that, if met, would provide for a system
that meets its business purpose. It follows that the
system requirements are derived from an understanding
of the business model. The system architectural
elements in the analysis model are subsystems,
localities (logical elements where fragments of system
execution can occur) and processes. In the
requirements analysis discipline, requirements for each
type of element are determined.

There is a process pattern for deriving
requirements for architectural elements:
9 Determine the requirements for a given

business model
9 Decompose that model into elements,

assigning roles and responsibilities to the
elements

9 Study how the elements collaborate to carry
out the model requirements. This usually
involves some form of collaboration
specification, e.g., a UML collaboration
diagram

9 Synthesize the analysis of the collaboration to
determine the requirements for the elements

This pattern is well known. With the business model
in place, the RUP-SE® method for deriving system
requirements is by partitioning the enterprise into the
system and its actors (external elements that interact
with the system). Then how the system and its actors
collaborate to meet the business requirements is
studied to determine the system requirements.

RUP-SE® applies to this pattern for deriving system
requirements using processes called use-case flow-
down and supplementary requirements flow-down.

Use-case flow-down begins by choosing an
architecturally significant set of use cases. For each use
case, a flow of events is developed. Then a description
of the interactions between the system actors and the
system itself is defined. The system responses are
“black box;” that is, they make no reference to the
architectural elements. Subsequently, initial subsystem
and process models are derived using standard object-
oriented analysis and design techniques.

With initial subsystems, localities, and processes
defined, specifying how these elements participate in
carrying out the use case revisits the flow of events.
This is now a white-box view, since the flow of events
now refers to design elements of the system.

Supplementary requirements flow-down is actually
accomplished concurrently by specifying budgets for
requirements that are allocated to individual black-box,
flow-of-event steps. Later, when the flow of events has
been expanded to include design elements, black-box
supplementary requirements allocations are subdivided
appropriately among the derived white-box steps.

Because this process can be applied recursively as
needed, the RUP-SE® organizational approach to
deriving design elements from use cases scales to very
large programs. We take advantage of decomposition of
the system into subsystems and localities with their
derived requirements. Each of these analysis model
elements is suitable for concurrent design and
development. UML subsystems might now be assigned
to separate development teams, and localities to
hardware development or acquisition teams. Each team
works from surveys of the recursively derived use cases
to develop their portion of the design and
implementation models.

A central feature of RUP® is that the system is
developed in a series of iterations, each of which adds
and thoroughly tests functionality. The timing and
content of iterations should be captured in an Iteration
Plan early in the project, and updated continually to
reflect the emerging understanding of the system and
changing needs.

The content of an iteration is specified by what use
cases and supplementary requirements are realized by
the components developed in the iteration. Each
iteration is tested by the subset of applicable system
test cases. Formal traceability should be developed and
maintained to provide a basis for deriving iteration plans
for subsequently specified subsystems and localities. A
good plan will provide opportunities to identify and
resolve technical risks early, once again far earlier than
the typical panic of a waterfall-based integration and
testing phase.

Thus, RUP-SE® provides system development
teams with the advantages of RUP’s best practices
while providing a setting for addressing overall system
issues. In particular, RUP-SE® is neither hardware nor
software centric; instead, it provides for ongoing
collaboration of business analysts, architects, and
systems engineers to solve the system problem jointly.

5.0 ENTERPRISE ARCHITECTURES

A successful enterprise architecture initiative

requires critical operational descriptions for given
mission areas and their objectives; the ability to link to
and evolve to a system architecture; and, for
interoperability and integration reasons, the ability to
realize discovery opportunities for reuse valuable to the
reengineering process. Known as business modeling by
industry, UML enterprise architectures capture the core
of operational needs such as nodes, elements,

activities, processes, organizational relationships,
information exchanges and, most importantly, vision and
doctrine.

In essence, an enterprise architecture captures all
the essential views identified by the pertinent
architecture framework. Important to SI International's
object-oriented approach is that the objects in the model
realize reuse, essential for recognizing and planning for
interoperability and integration as well as establishing
the framework for bonding the operational view to the
system view with total traceability. SI International has
developed a methodology that realizes this goal.

Our modeling approach also embraces the open-
system concept – modular growth, controlled change,
and scalability for interoperability in the rapidly evolving
environment. The open-system concept, when
implementing standards-based architecture, allows for
incremental technology insertion.

Our experience has shown that architecture tools
require collaboration and configuration management
among large teams in order to successfully architect a
large enterprise. Because IBM Rational Rose® was
originally developed for large-scale software
engineering, the tool scales well for enterprise modeling
using the UML. IBM tools such ClearCase® provide
effective mechanisms for configuration control Mission
Capability Packages at the team or individual level.
IBM’s ClearCase Multisite® tool allows the configuration
management scheme to span multiple servers in
multiple locations across the country. Data
synchronization occurs at any predetermined time
throughout the project. In addition, IBM’s ClearQuest®
provides anomaly tasking and tracking across the
architectural enterprise; this ensures anomalies are
tracked and corrected across the architectural teams.
These tools are well integrated, allowing the architects
to focus on the business of force transformation using
the UML and an appropriate architecture framework
rather than dealing with tool integration issues.

Each use case is value based and contributes
roles, nodes, systems, activities, functions, and
behaviors to successfully accomplish the desired value
based result—e.g. Measure of Combat Capability and
Cost (Figure 6). Roles, nodes and systems are depicted
with UML actors (the stick figures shown in Figure 6).
These techniques are only useful when sufficient
understanding can be taught to less experienced
architects.

Our experience has shown that object-oriented
methods are repeatable and the techniques are
trainable. The UML methods themselves are useful for
documenting the internal processes of the architecture
team (Figure 10). In essence, the tools are useful for
developing internal standing operating procedures
(SOPs), reducing training, and improving on consistency
and quality. Using the SOPs, the architects can
successfully and repeatedly develop the contents of
value-based Mission Capability Packages.

As the “parent use case,” the operational concept
(e.g. Develop Measure of Combat Capability and Cost
[Figure 6]) can be understood and developed using
UML Activity Models. The Activity Diagram for Develop

The discussions and views shown provide a
general overview of the process; however, there’s much
more involved in successfully creating a use case of
value for the enterprise manager and/or operator. This
overview is only intended to provide the reader a
general understanding of the value of the architecture-
centric methodology.

Measure of Combat Capability and Cost (Figure 6)
clearly outlines the process to achieve the value-base
objective, and the reader can easily determine that the
Stakeholder submits a Decision Need Request from
which an Analysis Plan is developed. As shown, many
of the activities presented <<include>> additional use
cases with their own processes to create relevant
products (objects) needed by the use-case activities.
Various products (objects created by other use cases)
are used by the Create Warfare Simulation use case to
provide Low-Level Metrics necessary to determine
Combat Capability and Cost. The Decision Support
System (DSS) Agent delivers the findings, Combat
Capability and Cost, to the requesting Stakeholder.

Figure 5: Node Connectivity Description (OV-2)

R

 : NASA

 : Planetary
Defense Center

Collaboration Diagram (OV-2)
Name: Maintain Asteroid Catalog - EDUC01

ev Date: 07-02-03

UNCLASSIFIED

 : Sensor Source

8: 5.7_02 Observation Metrics

7: 5.7_02 Special Tasking Request

9: 5.7_03 Observation Metrics

5: 5.5_02 Sensor Maintenance Schedule Change Request
1: 5.2_01 Sensor Tasking

10: 5.8_01 Asteriod Catalog

4: 5.5_01 Sensor Status and Maintenance Schedule
3: 5.4_01 Observation Metrics

2: 5.2_02 Sensor and Tasking Status

6: 5.7_01 Special Tasking Request

The information flow is clearly understood by the
mission or operational analyst and is useful in system
development. Each object (e.g. LowLevelMetrics; see
activities 5.7 and 5.8 in Figure 6) is either produced or
consumed by the activity. In addition, the objects can
move between nodes and organizations in the form of
information exchanges. The object movement is
captured by a System Operational Sequence (SOS)
depicted in Figure 7. Although the technique can be used to manage

complex requirements, some enterprises find the
Activity Models and related object data flows to be the
desired level of detail for enterprise decisions. Finally,
enterprises can benefit greatly with a method that has
uses at varying levels of abstraction, allowing further
decomposition to the system requirement should the
need arise as a better understanding of the enterprise is
realized.

Information exchanges depicted by the DoD
Architecture Framework’s Operational View (OV)-2
(Table 2), the Node Connectivity Description (NCD),
provide the information flow between nodes (both
operational and physical) and roles (Figure 5). The
architecture continues to mature with the NCD
Sequence (Figure 8), which provides a time-order view
of the activity and is automatically generated by the
NCD (OV-2). An activity model (Figure 10) can depict the high-

level process used by SI International to build
operational architectures. This process has been
developed and used successfully on a variety of DoD
programs. Proven repeatability, the systematic process,
and numerous feedback loops ensure synchronization
of any Enterprise’s required Architecture Framework
views as the enterprise architecture evolves over time to
remain current with mission needs and priorities.

Using the sequence view, behavior between nodes
and roles becomes better understood, allowing the
development of the Use Case Specification (UCS)
(Figure 9). The UCS, based on RUP®, is where the
words are added to the views to describe the system
behavior. The UCS describes the desired capabilities as
if the system were a “black box” using the principles of
RUP-SE®. The process is iterative and the views are
updated as the UCS becomes mature and captures the
essential requirements. Depending on the purpose of
the enterprise model, we have experienced varying
usages of this method. Some enterprises require only
conceptual descriptions of the processes, while others
require detailed system descriptions to serve as
descriptions of requirements to build systems.

6.0 INTEGRATED REQUIREMENTS MANAGEMENT

An OO enterprise architecture facilitates the

development of integrated capability. The enterprise
architecture is an overarching picture of mission
functions and the information exchanges required for
mission accomplishment. Enterprise architectures
reflect doctrinal and policy implications and become an
enabling technology to remove or significantly reduce
redundancy in requirements and documents while
maintaining compete traceability. They assist in the
definition of the physical and system requirements that
allow the operator to accomplish any mission in an
effective and efficient manner. The enterprise
architecture is meant to be a living concept, which
allows for new missions, new functions, new technology,
and new alliances. It is conceived as a “plug-and-play”

If system or developmental requirements are the
objective, the enterprise architects can apply the RUP-
SE® black-box technique using the UML Sequence
Diagram (Figure 7). This revolutionary new
breakthrough allows the architect and subject-matter
expert to collaborate on the desired system behavior. A
new system object (e.g. Figure 7 shows the new “DSS”
object) is used to articulate system behavior
requirements to the system object as if the object were
the black box. Using the tool’s documentation view,
further refined description of the behavior is developed,
eliminating any misinterpretation of the system
behavioral requirement.

Applicable
View

Framework
Product Framework Product Name General Description

All Views AV-1 Overview and Summary
Information

Scope, purpose, intended users, environment depicted,
analytical findings

All Views AV-2 Integrated Dictionary Architecture data repository with definitions of all terms used in
all products

Operational OV-1 High-Level Operational Concept
Graphic

High-level graphical/ textual description of operational concept

Operational OV-2 Operational Node Connectivity
Description

Operational nodes, connectivity and information exchange need
lines between nodes

Operational OV-3 Operational Information
Exchange Matrix

Information exchanged between nodes and the relevant
attributes of that exchange

Operational OV-4 Organizational Relationships
Chart

Organizational, role, or other relationships among organizations

Operational OV-5 Operational Activity Model Capabilities, Operational Activities, relationships among
activities, inputs and outputs. Overlays can show cost,
performing nodes, or other pertinent information

Operational OV-6a Operational Rules Model One of the three products used to describe operational activity—
identifies business rules that constrain operation

Operational OV-6b Operational State Transition
Description

One of three products used to describe operational activity—
identifies business process responses to events

Operational OV-6c Operational Event-Trace
Description

One of three products used to describe operational activity—
traces actions in a scenario or sequence of events

Operational OV-7 Logical Data Model Documentation of the system data requirements and structural
business process rules of the Operational View.

Systems SV-1 Systems Interface Description Identification of systems nodes, systems, and system items and
their interconnections, within and between nodes

Systems SV-2 Systems Communications
Description

Systems nodes, systems, and system items, and their related
communications lay-downs

Systems SV-3 Systems-Systems Matrix Relationships among systems in a given architecture; can be
designed to show relationships of interest, e.g., system-type
interfaces, planned vs. existing interfaces, etc.

Systems SV-4 Systems Functionality
Description

Functions performed by systems and the system data flows
among system functions

Systems SV-5 Operational Activity to Systems
Function Traceability Matrix

Mapping of systems back to capabilities or of system functions
back to operational activities

Systems SV-6 Systems Data Exchange Matrix Provides details of system data elements being exchanged
between systems and the attributes of that exchange

Systems SV-7 Systems Performance
Parameters Matrix

Performance characteristics of systems view elements, for the
appropriate timeframe(s)

Systems SV-8 Systems Evolution Description Planned incremental steps toward migrating a suite of systems
to a more efficient suite, or toward evolving a current system to
a future implementation

Systems SV-9 Systems Technology Forecast Emerging technologies and software/hardware products that are
expected to be available in a given set of timeframes, and that
will affect future development of the architecture

Systems SV-10a Systems Rules Model One of three products used to describe systems functionality—
identifies constraints that are imposed on systems functionality
due to some aspect of systems design or implementation

Systems SV-10b Systems State Transition
Description

One of three products used to describe systems functionality—
identifies responses of a system to events

Systems SV-10c Systems Event-Trace
Description

One of three products used to describe systems functionality—
identifies system-specific refinements of critical sequences of
events described in the operational view

Systems SV-11 Physical Schema Physical implementation of the Logical Data Model entities, e.g.,
message formats, file structures, physical schema

Technical TV-1 Technical Standards Profile Listing of standards that apply to systems view elements in a
given architecture

Technical TV-2 Technical Standards Forecast Description of emerging standards and potential impact on
current systems view elements, within a set of timeframes

Table 2: Essential and Supporting Framework Products

Figure 6: Activity Model (OV-5)

EDUC01_P1 Are sensors fully capable of providing observations on
asteroids to the planetary defense center ?

<<precondition>>

Activity Diagram (OV-5)
Name: Maintain Asteroid Catalog - EDUC01
Rev Date: 11-07-03

5.1 (U) Specify Baseline
Collection Requirements

5.2 (U) Task
Sensors

5.6 (U) Cue
Sensor

5.3 (U) Task
LIDAR

5.7 (U) Task Special NASA
Optical Telescopes

5.5 (U) Maintain
Sensor Status

5.8 (U) Distribute
Asteroid Catalog

[LIDAR tasking
required]

Predict and Report Laser
Illumination Hazards - EDUC02

<<use case>>

[special tasking required]
[maintain status]

[cue sensor] [distribution required]

[refine
observation]

<<include>>

5.4 (U) Receive and
Process Observations

EDUC01_P1 Are sensors fully capable of providing observations on
asteroids to the planetary defense center ?

<<precondition>>
EDUC01_P1 Are sensors fully capable of providing observations on
asteroids to the planetary defense center ?

<<precondition>>

Activity Diagram (OV-5)
Name: Maintain Asteroid Catalog - EDUC01
Rev Date: 11-07-03

5.1 (U) Specify Baseline
Collection Requirements

5.2 (U) Task
Sensors

5.6 (U) Cue
Sensor

5.3 (U) Task
LIDAR

5.7 (U) Task Special NASA
Optical Telescopes

5.5 (U) Maintain
Sensor Status

5.8 (U) Distribute
Asteroid Catalog

[LIDAR tasking
required]

Predict and Report Laser
Illumination Hazards - EDUC02

<<use case>>

[special tasking required]
[maintain status]

[cue sensor] [distribution required]

[refine
observation]

<<include>>

5.4 (U) Receive and
Process Observations

5.1 (U) Specify Baseline
Collection Requirements
5.1 (U) Specify Baseline
Collection Requirements

5.2 (U) Task
Sensors

5.2 (U) Task
Sensors

5.6 (U) Cue
Sensor

5.6 (U) Cue
Sensor

5.3 (U) Task
LIDAR

5.3 (U) Task
LIDAR

5.7 (U) Task Special NASA
Optical Telescopes

5.7 (U) Task Special NASA
Optical Telescopes

5.5 (U) Maintain
Sensor Status

5.5 (U) Maintain
Sensor Status

5.8 (U) Distribute
Asteroid Catalog
5.8 (U) Distribute
Asteroid Catalog

[LIDAR tasking
required]

Predict and Report Laser
Illumination Hazards - EDUC02

<<use case>>

[special tasking required]
[maintain status]

[cue sensor] [distribution required]

[refine
observation]

<<include>>

5.4 (U) Receive and
Process Observations
5.4 (U) Receive and

Process Observations

configuration where new mission functionalities are
added to the existing system and seamlessly integrated
into the operator's activities and tasks.

The enterprise architecture allows the decision
maker to visualize, in pictures and words, how the
organization operates and how all the required tasks are
performed. Another purpose of the enterprise
architecture is to provide the systems engineer with the
information needed to define the systems to be
developed without placing any technological restrictions
on the system's design.

The nature of today's programming and software
development environment is OO. By organizing
operational system characteristics, processes, and

activities in an OO form, software developers are no
longer required to reengineer the coding framework.
Core or common elements are clearly recognizable.
Using this UML methodology, an enterprise architecture
team is able to bind vision, doctrine, and operational
processes to an enterprise’s system designs.

For the NOAA, a stated key aspect of overall
strategy is to “…improve…policy, programmatic, and
managerial foundations…and build a corporate NOAA
that facilitates the effective, timely delivery of our
products and services.” (NOAA 2003) Applications of
the enterprise architecture methodology summarized in
this paper can contribute very meaningfully to the
administration’s achievement of that strategy.

Figure 7: System Operational Sequence (Operational Portion of SV-5)

System Operational Sequence (Part of SV-5)
Maintain Asteroid Catalog - EDUC01

 : Planetary : NASA Creation Date: 06-30-03 : Sensor : Earth Defense
Defense Center RevDate: 07-02-03 SourceSystem

1: present(: SensorAvailability)

2: set(: CollectionRequirements)

3: transfer(: CollectionRequirements)
4: transfer(: ObservationMetrics)

5: compare(: ObservationMetrics, : AsteroidCatalog, out : CandidateAsteroid)
6: present(: CandidateAsteroid)

7: transfer(: CollectionRequirements)

8: archive(: CollectionRequirements)

9: present(: CollectionRequirements)

10: transfer(: CollectionRequirements)

Figure 8: Node Connectivity Description (NCD) Sequence (OV-5/OV-3/OV-2)

 : Planetary
Defense Center

 : NASA : Sensor
Source

UNCLASSIFIED Sequence Diagram
Name: Maintain Asteroid Catalog - EDUC01
Rev Date: 06-30-03

5: 5.5_02 Sensor Maintenance Schedule Change Request

4: 5.5_01 Sensor Status and Maintenance Schedule

3: 5.4_01 Observation Metrics

1: 5.2_01 Sensor Tasking

2: 5.2_02 Sensor and Tasking Status

6: 5.7_01 Special Tasking Request

7: 5.7_02 Special Tasking Request

8: 5.7_02 Observation Metrics

9: 5.7_03 Observation Metrics

10: 5.8_01 Asteriod Catalog

(U) EDUCS01 - Maintain Asteroid Catalog
OPR: SI International
Phone #: (719) 235-4400
Rev Date: 11-07-03
1.0 (U) Summary
(U) Specifies activities, relationships and organizational roles required to develop and
maintain an asteroid catalog sufficient to support the earth defense from foreign bodies or
threats.
2.0 (U) Scope
(U) Manage sensor availability and task asteroid sensors to maintain currency of asteroid
positional data and characteristics.
3.0 (U) Actors
Planetary Defense Center, LIDAR, NASA, Optical Telescopes, Universities and Labs
4.0 (U) Preconditions
(U) Sensors must be fully capable of observing the heavens to identify, track, and provide
observations on asteroids to the planetary defense center.
5.0 (U) Primary Transactions
5.1 (U) Specify Baseline Collection Requirements
(U) Using the system, the Planetary Defense Center specifies information collection needs
based on sensor availability. Sensor Source availability is obtained in Step 5.5.
5.2 (U) Task Sensors
(U) Using the system, Sensor Source receive sensor tasking from the Planetary Defense
Center that task sensors capable of detecting, identifying, and tracking asteroids and other
relevant space objects within their field of view. Sensor Source uses the system to provide
status of tasking and sensor status. If the system determines LIDAR, as a Sensor Source,
requires tasking, then perform Step 5.3.
5.3 (U) Task LIDAR
(U) In addition to LIDAR providing cross sensor cueing, LIDAR can track asteroids. LIDAR
tasking is accomplished in Step 5.2; however, before the acquisition laser can be energized
to illuminate the target asteroid, a laser clearinghouse run must be accomplished to ensure
no active satellites or aircraft are lased. The system includes Predict and Report Laser
Illumination Hazards - EDUC02 to ensure illumination safety. Once illumination safety is
determined, the Space Defense Center uses the system to task LIDAR for Observation
Metrics.
5.4 (U) Receive and Process Observations
(U) The system provides Observation Metrics from Sensor Source at the Planetary Defense
Center for processing. The Planetary Defense Center uses the system to process the
observations by comparing historical asteroid data. If the system correlates the
observation to a known asteroid, the positional vector of the asteroid is updated. If the
observations compare to no known asteroids, then a candidate asteroid is developed, and
additional information regarding its position and composition is sought by further refined
collection requirements and sensor tasking in Steps 5.1 and 5.2.

5.5 (U) Maintain Sensor Status
(U) The system provides ongoing status of Sensor Source sensors to
include planned downtime and failure degradation notification to the
Planetary Defense Center. The system aids in providing scheduled
downtime coordinated with the Planetary Defense Center.
5.6 (U) Cue Sensor
(U) Since asteroids traverse the celestial sky, they may pass from a
sensor’s field of view. When this occurs, the system uses an LIDAR device
to cue another sensor to establish track of the asteroid and continue
collecting observations. Although this is an automated process, the LIDAR
manager notes the cueing transaction from one sensor to another.
5.7 (U) Task Special NASA Optical Telescopes
(U) Because NASA owns and operates special optical telescopes outside the
scope and purview of the Planetary Defense Center, NASA may use the
system to provide specific asteroid tasking to compliment Space Research
Centers sensors tasking. Information from this tasking is fed by the system
to Space Research Centers for research, as well as to the Planetary
Defense Center for asteroid catalog maintenance.
5.8 (U) Distribute Asteroid Catalog
(U) Periodically, or as needed, the Planetary Defense Center distributes the
updated Asteroid Catalog to LIDAR, NASA, Optical Telescopes, Space
Research Centers and interested users.
6.0 (U) Post-Conditions
(U) Asteroid Catalog is updated based on recent observations from the
Planetary Defense System.
7.0 (U) Alternate Transactions
(U) None
8.0 (U) User Interface
(U) TBD
9.0 (U) Participating Objects
(U) TBD
10.0 (U) References
(U) NASA Publication 10-40, Asteroid Catalog Maintenance, July 2000
11.0 (U) Notes
(U) Information included in the Asteroid Catalog:
a. (U) Asteroid Orbital element set data
b. (U) Element set observation age (regency of observed position)
c. (U) Asteroid composition (material and density)
d. (U) Point of closest approach to Earth (time and location)
e. (U) Probability of impact at point of closest approach to the Earth
f. (U) Any other items of interest or significance

Figure 9: Use Case Specification

Figure 10: A mature enterprise architecture development process ensures synchronization of
required Enterprise Architecture Framework views

Does NCD Sequence
require update?

Develop System
Operational Sequence

Does Activity Model
require update?[update Activity Model]

Does SOS
require update?

[update SOS]

[SOS complete]

[update verb or scope]

[verb and scope complete]

[actor and role complete]

[update actor or role]

[update vision and mission]

[vision and mission complete]

Do vision and mission
require update?

Do action verb or
scope require update?

Do actor and role
require update?

Does ROV
require update?

Develop Vision
and Mission

Determine
Results of Value

Do results of value
accomplish mission?

[update ROV]

Develop Use Case Action
Verb and Scope

[mission accomplishment]

Determine Actors
and Roles (OV-4)

[update ROV]

[update verb or scope]

Develop Node Connectivity
Description (OV-2)

[action verb and scope complete]

Does use case action and
scope determine ROV?

[ROV complete]

Does actor or role
require update?

[update actor or role]

Does NCD
require update?

[update NCD]

Develop Node Connectivity
Description Sequence (OV-5)

[actor and roles complete]

Enterprise Architecture
Development Activity Model
11-7-03

Develop Activity Model and
Identify Objects (OV-7)

[NCD complete]

[NCD Sequence complete]

Does NCD Sequence
require update?
Does NCD Sequence
require update?

Develop System
Operational Sequence

Does Activity Model
require update?
Does Activity Model
require update?[update Activity Model]

Does SOS
require update?
Does SOS
require update?

[update SOS]

[SOS complete]

[update verb or scope]

[verb and scope complete]

[actor and role complete]

[update actor or role]

[update vision and mission]

[vision and mission complete]

Do vision and mission
require update?
Do vision and mission
require update?

Do action verb or
scope require update?
Do action verb or
scope require update?

Do actor and role
require update?
Do actor and role
require update?

Does ROV
require update?
Does ROV
require update?

Develop Vision
and Mission

Determine
Results of Value

Do results of value
accomplish mission?

[update ROV]

Develop Use Case Action
Verb and Scope

[mission accomplishment]

Determine Actors
and Roles (OV-4)

[update ROV]

[update verb or scope]

Develop Node Connectivity
Description (OV-2)

[action verb and scope complete]

Does use case action and
scope determine ROV?

[ROV complete]

Does actor or role
require update?

[update actor or role]

Does NCD
require update?
Does NCD
require update?

[update NCD]

Develop Node Connectivity
Description Sequence (OV-5)

[actor and roles complete]

Enterprise Architecture
Development Activity Model
11-7-03

Develop Activity Model and
Identify Objects (OV-7)

[NCD complete]

[NCD Sequence complete]

REFERENCES

Boehm, B.W., 1988: A Spiral Model of Software

Development and Enhancement. IEEE Computer,
May, pp. 61-72.

Booch, G., 1995: Object Solutions―Managing the
Object Oriented Process. Addison-Wesley, 323 pp.

Command, Control, Communications, Computers,
Intelligence, Surveillance and Reconnaissance

(C4ISR) Architecture Framework (CAF), 1997,
Version 2.0.

David, L., 2002: NOAA’s Big Picture Look at Earth.
Space News, 27 November 2002.

Kruchten, P., 1998: The Rational Unified Process, An
Introduction. Addison-Wesley, 320 pp.

NOAA, 2003: NOAA’s FY 2003 ― FY 2008 Strategic
Plan, 31 March 2003.
http://www.osp.noaa.gov/pdfs/FinalMarch31st.pdf

http://www.osp.noaa.gov/pdfs/FinalMarch31st.pdf

