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1. INTRODUCTION

Ensemble weather forecasts have been conducted
operationally in the U.S. and Europe since 1993 (Toth
and Kalnay 1993, Molteni et al. 1996, Houtekamer
et al. 1996). Until recently, these operational
ensembles consisted solely of parallel forecasts using
the same forecast model but different initial conditions.
Typically, the spread of forecasts in the ensemble was
too small, presumably due in large part to imperfections
in the forecast model. Ideally, the ensemble forecast
system ought to include ways of properly including the
additional uncertainty introduced by an imperfect model.

Estimating model uncertainty is a difficult problem.
Buizza et al. (1999) proposed a simple scheme to
introduce stochastic noise to simulate uncertainties
in model parameterizations. In this scheme, the
parameterized tendencies were modeled stochastically
by multiplying them by a random number between 0.5
and 1.5. Many groups have suggested that individual
ensemble member forecasts be integrated from different
models or use different parameterizations. For ensemble
data assimilation (Evensen 1994, Houtekamer and
Mitchell 1998, Hamill 2004) purposes, Mitchell and
Houtekamer (2000) proposed to estimate the correlation
length scale and the vertical correlations of model
error using data assimilation innovation statistics and
an approach suggested by Dee (1995). Random samples
of this model error distribution were then added to each
first guess field before estimating the covariances from
the ensemble.

The general approach of using innovation statistics
to estimate model-error statistics is sensible; practically,
the true state of the atmosphere is never known, so
a comparison of observations and model forecasts
provides trustworthy data to make such comparisons. As
we are still learning about model errors, however, it may
prove useful to use an alternative approach, constructing
a toy system where the true state is known. In this
study we will use a comparatively high-resolution model
integration (T126) to examine the errors introduced in a
T31 model as a consequence of unresolved scales. We
are interested in some of the general properties of these
errors. Are they large or small? Are they random or
flow dependent? To what extent are they temporally
and spatially correlated? Though these experiments will
be conducted with relatively simple models, the general
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framework could be extended to real NWP models, e.g.,
a synthetic T2000 simulation could be used to understand
the model-error characteristics of a T300 simulation.
The knowledge gained here may teach us how to more
effectively parameterize model uncertainty for ensemble
forecast and ensemble-based data assimilation purposes.

2. EXPERIMENT DESIGN

A dry, spectral primitive equation model with
no terrain is used in this experiment. The model
is essentially the same as the model described more
completely in Hamill et al. (2003). The model is
forced by relaxation of temperature to a prescribed
zonal mean state, which is similar but not identical
to the state described by Held and Suarez (1994).
The only difference in this version is a more stable
tropical troposphere to lessen the incidence of tropical
superadiabatic lapse rates. In these simulations the
model was spun up for a period of 200 days from a
random perturbation imposed on a resting state. After
200 days, the high-resolution model solution (T126 L28)
was used as the true model state, and forecasts at reduced
resolution were conducted.

The general methodology for exploring model
errors is illustrated in Figure 1. Panel (a) shows a T126
initial condition, regarded as the true state at time t=0.
Surface temperature is denoted by colors and sea-level
pressure by the black contours. Land/sea boundaries
are overlaid to provide perspective as to scale, but are
essentially meaningless. Panel (b) shows the true state
12 h later, generated by making a 12-h forecast from the
T126 initial condition using the T126 forecast model.
Suppose we are concerned with an accurate forecast for
scales T31 and below, the “resolved scales” (as opposed
to T32-T126 being the “unresolved scales”). Truncating
the 12-h true state to T31, we generate panel (c), the
true depiction of the resolved scales. If a forecast is
made using a T31 model, then the initial condition at
T31, panel (d), is generated from a truncation of (a), and
then a 12-h forecast is made forward, shown in panel (e).
Comparing (c) and (e), we thus can assess the errors in
the resolved scales contributed by the lack of interaction
with the unresolved scales. Note that this simulation
concept was also recently utilized in a paper by Tribbia
and Baumhefner (2003).

One drawback of this approach is that the model
climate of the resolved scales in the T126 model and the
T31 model are not identical. Figure 2 shows a power
spectrum from 100-day nature runs of both models.
Note that there is less energy in the shorter resolved
scales in the T31 model than in the T126. Hence, a T31



Figure 1. Illustration of process for examining 12-h error contributed by unresolved scales in T31 forecast. (a) Snapshot of a T126 initial condition,
regarded as the true state at time t=0. Surface temperature is denoted by colors and sea-level pressure by the black countours. (b) T126 true state
12 h later. (c) Truncation of the 12-h true state to T31, the true depiction of the resolved scales. (d) T31 initial condition at T31, generated from a
truncation of (a). (e) 12-h forecast of T31 model. Forecast errors of resolved scales determined by comparing (c) and (e).

Figure 2. Kinetic energy spectrum of nature run simulations at T126
and T31.

forecast initialized with the resolved scales of the T126
initial condition will have errors from two sources, the
model error from the lack of interaction with unresolved
scales and the systematic drift toward the different T31
attractor.

3. RESULTS

a. Error growth characteristics

How large are the errors contributed by the
unresolved scales, and how do these errors change with
time? Following the general procedure outlined in Fig.
1, we initialized a T31 forecasts with the resolved scales
from the T126. The domain mean specific kinetic energy
for a given lead time was calculated over the nt=180
separate cases according to

KE = 0.5

∑nt
j=1

∑np
i=1 α(i)

(
u′

j(i)2 + v′j(i)2
)

(
nt

∑np
i=1 α(i)
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where u′
j(i) and v′j(i) are the u− and v-velocity

differences between the truncated T126 and the T31
forecasts at the ith grid point, and αi is the grid area
associated with the ith grid point of np grid points. The
global growth of the magnitude of a typical error, i.e.,√

2 KE was then examined as a function of lead time
(Fig. 3). Errors grow somewhat more quickly in the first
12 h, but steadily thereafter.

Examining the global kinetic energy error growth
as a function of total wavenumber (Fig. 4), the errors
are initially largest at the smallest scales but grow



Figure 3. Growth of wind errors due to unresolved scales as function
of forecast lead time. Data averaged over 180 cases separated by 12
h.

Figure 4. Kinetic energy error spectrum due to unresolved scales as a
function of total wavenumber and lead time in hours.

upscale so that by 48h they are peaked at the synoptic
scales. Thereafter, the errors grow relatively uniformly
at the synoptic and planetary scales. These results are
consistent with Tribbia and Baumhefner (2003).

b. Temporal continuity of short-term errors

We now consider whether the errors from the
unrepresented scales have flow dependence and temporal
continuity. Suppose the process illustrated in Fig. 1 is
repeated every 12 h, continually re-initialized so that the
resolved scales have no error at the start of a 12-h forecast
and whatever error develops in the subsequent 12 h is
a consequence of those unrepresented scales. Figure 5

shows a time series of four such sequential 12 h forecast
errors, here of 1000 hPa temperature. Note that the 12-h
errors are generally small in scale, consistent with Fig. 4,
and over much of the domain they do not appear to have
much temporal consistency. However, for one synoptic
feature on the “west coast” of the U.S. (again, geography
is fictional) and another in the western Atlantic Ocean,
the errors for each 12-h period appear to be flow-
dependent and to propagate with the short wave. This
illustrates that in some special circumstances, perhaps
in more baroclinically active situations, the errors of the
unrepresented scales are closely tied to the flow of the
day.

In subsequent work it may be desirable to generate
random model-error states that have the same spatial and
temporal characteristics as short-range forecast errors
due to model truncation. This may be useful in a
simulation experiment to test whether such additive
model error (e.g., Mitchell and Houtekamer 2000)
improves ensemble-based data assimilations. This
research has not yet proceeded to the point of testing a
T31 ensemble-based assimilation method, assimilating
observations from a T126 nature run and adding random
samples of simulated model errors due to truncation.
However, one can make several qualitative conclusions
about the characteristics of additive errors and reasonable
ways to simulate them. First, as indicated by Fig. 4,
the additive noise that one would add will have a very
different structure depending on how often observational
data is assimilated. If observations are infrequent,
the model-error structures will be dominated by the
baroclinic scales. If assimilation cycles are separated
by only a few hours, a more realistic assumption,
the noise due to truncation errors will primarily be
small in scale. This suggests that the model errors
contributed by the unresolved scales will be small
in scale, which is different, for example, than the
model error parameterization suggested by Mitchell
and Houtekamer (2000) [though their model error
parameterization accounts for more than just interactions
with unresolved scales].

We have developed a general framework for creating
random samples that simulate short-range forecast errors
due to truncation. Let’s assume we want to simulate
a time series of 12-h errors. With a set of T126
and T31 short-range forecasts generated as in Fig.
1, we form a matrix X = (x

′
1, . . . , x

′
n) whose ith

column is the ith time’s state vector of 12-h forecast
differences due to model truncation. A singular value
decomposition (SVD) of X̃ = EX is then performed,
where E is a diagonal matrix of weights that (1)
accounts for the geographical variations in grid box
size associated with each state vector element, and (2)
weights temperatures, winds, and pressures according to
the total-energy norm (Hamill et al. 2003). Specifically,
a weight of (cp/Tref )−1/2 is applied to temperature
components, where cp is the specific heat capacity of
dry air at constant pressure (1004 J kg−1 K−1), and



Figure 5. Illustration of flow dependence and temporal correlation of
errors due to truncation of unrepresented scales. Following procedure
outlined in Fig. 1, a set of four sequential 12-h forecasts of 1000 hPa
temperature (solid lines, contours every 5 K) and temperature error
(colors) are shown.

Tref is a reference temperature (300 K). A weight of
(R Tref/Pref )−1/2 is applied to pressure components,
where Pref = 1000 hPa, and R is the gas constant
for dry air (287 J kg−1 K−1). In any case, the SVD
of X̃ is X̃ = ŨΣ̃ṼT. Hereafter we will focus on the
properties of the nsv right singular vectors U = E−1Ũ =
(u1, . . . , unsv).

Figure 6. Projection of time series of 12-h model errors onto singular
vectors of 12-h model errors. (a) Leading singular vector, (b) 100th
singular vector, (c) 200th singular vector.

Figure 6 shows the projection of the time series
of 12-h model errors onto the 1st, 100th, and 199th
ordered singular vectors. As indicated, the lag-1 (12-
h) autocorrelation is 0.85, 0.41, and -0.14, respectively
(and though not shown, the leading singular vector is
much larger in scale and amplitude than the trailing
singular vector). Now, suppose one wished to develop
a perturbation method that attempts to simulate random
model errors with the correct, time-averaged spatial and
temporal characteristics. Let x

′
(t) denote a synthetic

model-error perturbation to the state at time t. We
assume that such a perturbation can be generated as a
linear combination of the singular vectors:

x
′
(t) =

nsv∑
i=1

pi(t)ui (2)

where pi(t) is a projection coefficient for the ith singular
vector at time t. These coefficients are simulated with a
first-order autoregressive model (Wilks 1995):

pi(t) = pi(t − 1) φ (i) + ri σe(i). (3)

Here, φ (i) is the lag-1 correlation coefficient, ri is a
random, N (0, 1) number, and σ2

e(i) is the white-noise
variance of the ith singular vector. This will be modeled
(ibid, p. 306) using the variances of the projection
coefficients σ2

x(i):

σ2
e(i) = (1 − φ2(i) ) σ2

x(i). (4)

As shown in Fig. 7, it a simple model for φ(i) and σx(i)
is possible to estimate as a function of the singular vector
number.



Figure 7. (a) Lag-1 (12-h) autocorrelation, derived, as in Fig. 6, from
a time series of 12-h projection coefficients onto the ordered singular
vectors. Dashed line indicates linear regression model fit as a function
of the singular vector number; regression equation shown in lower
left. (b) Standard deviation of time series of projection coefficients as
a function of singular vector number. Fitted linear regression model
again shown.

An examination of the characteristics of such
synthetic time series is just beginning. Preliminary
examinations have shown that the time series does not
exhibit the flow-dependent, coherent structures shown
in Fig. 5, and aspects such as the balance of these
perturbations and their efficacy in data assimilation is
yet to be explored. We hope to present an extension of
this work at the conference.

4. CONCLUSIONS

In this preprint we examined the characteristics of
errors in a global T31 forecast model. T31 forecasts were
initialized with the resolved scales (T31 and below) from
a T126 forecast model, identical in every respect except
for the higher resolution. In this manner, it is possible
to explore the contributions of the unresolved scales of
motion (T32 and above) on the evolution of the resolved
scales. This provides an analogue for understanding
some of the error characteristics of operational weather
forecast models when their resolution must be arbitrarily
truncated.

We found that errors due to unresolved scales begin
small in scale but are eventually dominated by the
baroclinic scales after ∼ 48 h. Growth of the magnitude
of a typical perturbation is relatively uniform through 96

h. In some instances, a time series of short-term forecast
errors can be temporally coherent and propagate with a
significant feature of the flow.

A method for generating additive noise that
simulates short-term model errors due to the contribution
of the unresolved scales was proposed. We plan
a subsequent simulation experiment whereby a T126
simulation will be used as a nature run, for verification
and for generating observations to be assimilated into
a T31 ensemble-based assimilation system. The
additive noise model developed here will be used in
the ensemble assimilation system and compared against
other parameterizations of model error.
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