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1. INTRODUCTION

Improving weather forecasts is a primary goal of the
U.S. National Oceanic and Atmospheric Administration
(NOAA) and other weather services. One commonly
emphasized way to improve weather predictions has
been to improve the accuracy of the numerical forecast
models. Much effort has been expended to improve the
estimate of the initial condition, to conduct forecasts with
higher-resolution numerical models, and to incorporate
more complex physical parameterizations of processes
that occur below the grid scale. Within the last decade,
ensemble forecast techniques have also been embraced
as a tool for making probabilistic forecasts and for
filtering the predictable from the unpredictable scales
(via ensemble averaging).

There are forecast situations that are so intrinsically
difficult that skill has not improved much despite the
investment in large new computers and despite the
millions of person hours invested in model development
over the last 40 years. Medium-range weather
forecasting is one such endeavor. The skill of these
forecasts is marginal because of the inevitable rapid
growth of errors through chaos and because of the
steadier growth of model errors. In order to make a
skillful medium-range forecast, forecasters must thus be
able to adjust for model systematic errors and be able
to distinguish between features that are predictable and
those that are unpredictable.

The format of forecasts issued by the NCEP
Climate Prediction Center (CPC) implicitly reflect a
judgment of what can be predicted skillfully and what
cannot. Daily details of synoptic-scale features are
considered largely unpredictable, while shifts in the
probability density function of averages over several
days may be predictable. Consequently, CPC produces
probability forecasts of time averages of the deviations
from climatology. Specifically, CPC makes 6-10 day
and week 2 (8-14 day) forecasts of daily average
surface (2m) temperature and precipitation tercile
probabilities. These are forecasts of the probability
that the temperature and precipitation averaged over
these periods will be below the 33rd or above the
67th percentile of the distribution of climatological
observed temperatures and precipitation. Forecasters at
CPC synthesize information from the NCEP ensemble
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prediction system as well as models from other weather
services and other statistical tools. As will be shown, the
skill of operational week 2 forecasts is currently quite
low.

Another possible way of improving weather fore-
casts is to adjust the forecast model output based on a
database of retrospective forecasts from the same model.
The adjustment of dynamically based forecasts with sta-
tistical models has a rich history. Model Output Statis-
tics, or “MOS” techniques (Glahn and Lowry 1972;
Woodcock 1984; Glahn, 1985; Carter et al. 1989; Vis-
locky and Fritsch 1995) have been used widely since
the 1970s. However, in recent years, the U.S. National
Weather Service (NWS) has de-emphasized the use of
MOS techniques based on fixed models; such an ap-
proach requires a large sample of forecasts from the same
model to achieve their maximal benefit. This implies that
a large number of retrospective forecasts must be run
prior to implementation of a new model version and that
the current forecast model be “frozen” until retrospec-
tive forecasts are computed for any planned new model
version; changing the model numerics may change the
forecasts’ error characteristics, invalidating the regres-
sion equations developed with the prior model version.
Consequently, decision makers at many weather predic-
tion facilities have judged that forecast improvements
will come much more rapidly if the model development
is not slowed by the constraints of computing these ret-
rospective forecasts.

Statistical algorithms like MOS improve on raw nu-
merical forecasts by implicitly removing model bias and
filtering the predictable from the unpredictable. Given
the difficulty of making skillful medium-range forecasts
without statistical models, we reconsider the value of sta-
tistical weather forecasting for this application. Specifi-
cally, we will examine here whether a reduced-resolution
ensemble prediction system calibrated from a set of prior
numerical forecasts can produce forecasts that are more
skillful than the products generated by human forecasters
based on a variety of state-of-the-art, higher-resolution
models. A reduced-resolution (T62) version of NCEP’s
Medium-Range Forecast (MRF) modeling system based
on 1998 model physics was used to run a set of ensemble
“re-forecasts” over the period 1979-2001. Statistically
adjusting current T62 forecasts based on these prior fore-
casts will be shown to produce substantial improvements
in forecast skill, greatly exceeding the skill of the oper-
ational forecasts. Given the improvements produced
through the use of statistical techniques, we propose that
re-forecasting and the application of MOS-like statis-



tical techniques should become an integral part of the
medium-range numerical weather prediction process.

2. EXPERIMENT DESIGN

a. Forecast model, initial conditions, and verifica-
tion data

A T62 resolution version of NCEP’s MRF model
(Kanamitsu 1989; Kanamitsu et al. 1991; Caplan et
al. 1997) was used to generate an ensemble of 15-day
forecasts over a 23-year period from 1979 to 2001.

A 15-member ensemble was produced every day
of the 23 years with 0000 UTC initial conditions. The
ensemble initial conditions consisted of a control initial-
ized with the NCEP-National Centers for Atmospheric
Research (NCAR) reanalysis (Kalnay et al. 1996) and a
set of 7 bred pairs of initial conditions (Toth and Kalnay
1993, 1997) re-centered each day on the reanalysis initial
condition.

Here, we will concentrate on comparing the
proposed MOS-based forecasts against CPC operational
forecasts for a set of 100 days during the winters of
2001 and 2002. This comparison was performed at
the subset of 153 stations where CPC forecasts were
available (darkened dots in Fig. 1). Independent data
prior to the year 2000 were used to train the CDC re-
forecast MOS algorithm. We also present some results
summarized over a set of 355 stations and the full 23
years of December-January-February (DJF) forecasts
from 1979 to 2001. The observed climatology used
in these experiments was determined from 1971-2000
data, consistent with CPC practice.

b. Logistic regression model and forecast / evalua-
tion process

Following the format of operational 6-10 day
and week 2 forecasts produced at CPC, we produced
forecasts of the probability distribution of precipitation
and surface temperature at the stations. Probabilities
were set for three categories, the lower, middle, and
upper tercile of the distribution of observed anomalies

Figure 1. Locations in conterminous U.S. where CDC MOS and CPC
forecasts were compared.

from the mean climatological state. The method
for determining the upper and lower tercile anomaly
boundaries (T2/3 and T1/3, respectively) is discussed
below.

A logistic regression technique (e.g., Wilks 1995;
Applequist et al. 2002) was used for this experiment; the
spatially interpolated ensemble-mean forecast (precipi-
tation) or forecast anomaly (surface temperature) was
the only predictor. Separate regression analyses were
performed for each observation location. By regressing
on the ensemble mean rather than a single forecast, we
exploited the ability of ensemble averaging to filter out
the smaller, unpredictable scales and retain the larger,
predictable ones.

The logistic regression model sets the probability
that the observed anomaly V will exceed T2/3 or T1/3
according to the equation (here, for the upper tercile)

P (V > T2/3) = 1 − 1

1 + exp (β̂0 + β̂1x)
(1)

where x is the ensemble mean forecast or forecast
anomaly and β̂0 and β̂1 are fitted regression coefficients.

The process for producing and evaluating MOS
forecasts is described here for week 2 forecasts of upper-
tercile probabilities of surface temperature. Lower-
tercile probabilities and 6-10 day probabilities were
handled in an identical manner. Precipitation was
handled somewhat differently and is described later.
A separate regression analysis was performed for each
day and each station. The regression parameters were
determined using a data set of ensemble mean forecast
and observed week 2 anomalies from climatology. From
these we compute the associated binary verification
data (was the observed anomaly above the upper tercile
(P (V > T2/3 = 1) or below or equal to it (P (V > T2/3 =
0?) Regression coefficients were determined through a
cross-validation approach (Wilks 1995) to ensure the
independence of the training and evaluation data. For
example, given 23 years of available forecasts, when
making forecasts for a particular year, the remaining 22
years were used as training data. The same 22 years
were used to define the forecast climatology.

The generation and evaluation of tercile probability
forecasts followed a 3-step process. The process is
described for a week 2 forecast; an identical process
was used for the 6-10 day forecasts. The three steps
were:

(1) Train: (a) Calculate a daily running mean
climatology of the week 2 forecast and week 2 observed
values individually for each station. The observed
climatology used observations from 1971 to 2000; the
forecast climatology used forecasts from 1979 to 2001.
The year for which the forecast is being made was
excluded from both. For a given year and day of the
year, the climatology was the week 2 value averaged
over all sample years and the 31 days (15 before, 15
after) centered on the date of interest. The process was
repeated for each year and day of the year. (b) Determine



the forecast and observed anomaly by subtracting the
respective climatologies. [Repeat this for each year,
day, and station]. (c) Generate a training data set of
22 × 31 samples of week 2 ensemble mean forecast
anomalies and week 2 observed anomalies using a 31-
day window centered on the day of interest. [Repeat for
each year, day, and station]. (d) Set the observed upper
tercile anomaly T2/3 as the 67th percentile of the sorted
observed anomaly data. [Repeat for each year, day,
and station]. (d) Create the 22 × 31 binary verification
data samples. Each sample verification is categorized
as being above the upper tercile (P (V > T2/3 = 1) or
below or equal to it (P (V > T2/3 = 0). [Repeat for each
year, day, and station]. (e) Determine β̂0 and β̂1 through
logistic regression using the ensemble mean anomaly
as the only predictor. [Repeat for each year, day, and
station].

(2) Forecast : Produce tercile probability forecasts
for each year, day, and station in DJF using eq. (1).

Figure 2 illustrates the process for determining the
regression model for surface temperatures, here for 6-
10 day forecasts at Medford, Oregon on January 16.
A scatterplot of the ensemble mean 6-10 day forecast
anomaly was plotted against the corresponding week
2 observed anomaly using the 22 years × 31 days
of samples. From the observed data, the upper and
lower terciles were calculated (horizontal dashed lines).
Sample points where P (V > T2/3) = 1 are denoted with
red dots and points where P (V > T2/3) = 0 with blue
dots. If one were to set the upper tercile probabilities
just using the relative frequencies of observed values in
a bin around a forecast value (the bin limits denoted
by the vertical lines), then the average bin probabilities
would be denoted by the horizontal solid lines. For
example, counting all the forecasts with an anomaly
between -6 and -4 C and tallying how often the observed
anomaly exceeds the upper tercile, the probability was
approximately 9 percent. When all the samples were
supplied to the logistic regression, probabilities were
determined as a smooth function of the forecast anomaly
according to the dotted curve.

(3) Evaluate : After forecasts have been produced
for each day in DJF for each of the 23 years using this
cross-validation process, evaluate the forecast accuracy
using the ranked probability skill score (RPSS; Wilks
1995) with climatology as a reference, and reliability
diagrams (ibid).

Precipitation forecasts used a slightly modified
regression method. Ensemble mean precipitation
forecasts and observed values were used without
removing the climatological mean. Also, because
precipitation forecast and observation data tend to be
non-normally distributed, the precipitation forecasts and
observations were power transformed before applying
the logistic regression. Specifically, if x denotes the
ensemble mean forecast, we generated a transformed
forecast x̃ according to x̃ = x0.25, and x̃ was used as the
predictor.

3. RESULTS

Figures 3 and 4 show reliability diagrams and RPSSs
for the CDC re-forecast and operational CPC 6-10 day
forecasts, respectively. Figures 5 and 6 provide the week
2 forecast diagrams. The re-forecasts were significantly
sharper and more reliable than the operational CPC
forecasts and hence much more skillful. In fact, the
CDC re-forecasts were more skillful at week 2 than the
CPC forecasts were at 6-10 days. Equivalently, this
indicates that over these two winters, the application of
the MOS approach increased the effective forecast
lead time by several days.

The skill of the CDC MOS forecasts varied with
geographic location (Figure 7). For temperature,
cold/warm outbreaks in the midwest were the most
skillfully predicted, while for precipitation, west-coast
forecasts were more skillful, perhaps associated with the
PNA pattern.

We also considered the extent to which forecast skill
could be retained if smaller data sets were used. Figure
8 plots the skill of forecasts for different numbers of
years of training data, and Figure 9 indicates how much
skill is present with four years of forecasts when 1, 2,
3, 4, or 5 days are used between sample forecasts. The
results suggest that the full 23 years of retrospective
data is not needed; by 10 years nearly all of the benefit
is obtained. Also, if a limited number of years of

Figure 2. Illustration of logistic regression method. Ensemble mean
6-10 day forecast anomaly and corresponding 6-10 day observed
anomaly are plotted for 16 January at Medford, Oregon. Upper and
lower terciles are denoted by dashed lines. Red dots are samples with
observed anomalies above the upper tercile; blue dots below. Vertical
lines denote bin thresholds for setting tercile probabilities based on
the relative frequencies of observed values above the upper tercile.
Thick horizontal lines denote the probabilities associated with each
bin (refer to probabilities labeled on the right side of the plot). Dotted
curve denotes the upper tercile probabilities determined by logistic
regression.



Figure 3. Reliability diagrams CDC’s MOS-based 6-10 day tercile
probability forecasts for (a) surface temperature and (b) precipitation.
Dashed line denotes lower tercile probability forecasts, solid line
denotes upper tercile probability reliability. Inset histograms indicate
frequency with which extreme tercile probabilities were issued.

retrospective forecasts can be computed, it is wiser to
use forecasts over a longer span of time with more days
between sample forecasts. In this way, a wider diversity
of weather scenarios are spanned.

More results are discussed in an upcoming journal
article to appear in Monthly Weather Review, probably
in the spring of 2004. Until then, a version
of the full manuscript can be downloaded from
http://www.cdc.noaa.gov/∼hamill.

4. DISCUSSION AND CONCLUSIONS

Figure 4. As in Fig. 2, but for operational NCEP CPC 6-10 day
re-forecast based MOS tercile probability forecasts.

In this article we demonstrated dramatic improve-
ments in medium- to extended-range forecasts are pos-
sible using MOS techniques. Using a low-resolution
model and 22 years of training data, it was possible
to make probabilistic week 2 forecasts that were more
skillful than the current 6-10 day operational forecasts
during the 2001-2002 winters. This improvement oc-
curred despite the fact that operational forecasts are
based on larger ensembles and higher-resolution mod-
els - but without knowledge of their biases and error
statistics.

Though this article has focused on the direct benefit
of MOS approaches, there are numerous other benefits
from computing a large number of re-forecasts. Re-



Figure 5. As in Fig. 2, but for week 2 CDC MOS-based forecasts.

forecasts may facilitate the model development process,
for systematic errors that may not be apparent when
model changes are tested on just a few cases may be more
obvious with the larger sample afforded by re-forecasts.
Extreme weather events are of course more numerous
in longer training data sets, so forecast characteristics
during these important events can be determined. CDC
is making the current re-forecast data set freely available
for download at http://www.cdc.noaa.gov/reforecast .
This data set may be useful for exploring other MOS
approaches, for predictability research, and a host of
other applications.

In summary, we have showed that MOS approaches
can result in dramatic improvements to 6-10 day and
week 2 forecasts. Such approaches require a large
data set of retrospective forecasts and observations.

Figure 6. As in Fig. 3, but for week 2 NCEP CPC forecasts.

Given the substantial value added, weather forecast
services may wish to evaluate how they can incorporate
these statistical techniques into their forecast process.
NOAA/CDC is working with NCEP to integrate these
techniques into operations.
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Figure 7. RPSS of CDC MOS 6-10 day forecasts, evaluated in DJF
from 1979-2001 at a set of 355 stations, primarily in conterminous
U.S.

Figure 8. RPSS as a function of the number of years of training data
used.

Figure 9. RPSS when 4 years of training data were used, with 1, 2,
3, 4, and 5 days between successive samples in the training data set.
The lines labeled “Full 22” indicate the skill when the full 22 years of
cross-validated training data were used.
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