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1. INTRODUCTION

Streamfunction and velocity potential are widely used as background in
three-dimensional variational analysis (3DVAR), which, for convenience is
referred to as an S-V 3DVAR system. Such a 3DVAR system produces
analyses possessing large-scale motions of background field and retrieving
small-scale motions from the observations (Xie et al. 2002). This makes
an S-V 3DVAR analysis similar to an OI analysis in most cases if similar
covariances/correlations are applied to retrieve motions smaller than what
observations of velocity can resolve. Global constraints or balances help the
3DVAR to be a better analysis tool than OLI. If there are large-scale differences
between background and observations, this 3DVAR may miss the opportu-
nity to correct the large-scale motions. However, when accurate background
fields of velocity on large scales exist or scales that observations can resolve,
an OI can achieve as good an analysis as an S-V 3DVAR without global
constraints. In our numerical experiences, an S-V 3DVAR system may add
some nonphysical errors to the analyses after examining the error patterns
of the increment fields.

!Corresponding author address: Dr. Yuanfu Xie, NOAA/FSL, FS1, 325 Broadway,
Boulder, CO 80305-3328. E-mail: Yuanfu.Xie@noaa.gov.



In this presentation, we examine the error patterns in detail and explain
the cause of these patterns. In light of a theoretical explanation on these
error patterns, we recommend the use of other control variables in designing
3DVAR systems, for example, to use velocity fields or vorticity and divergence
in background fields. A 3DVAR using velocity background fields, referred to
as a U-V 3DVAR system, with a recursive filter can avoid the nonphysical
errors from an S-V 3DVAR for analyzing scales which cannot be resolved
by an observation network, a. If there is useful large-scale information in
the differences between observations and background fields, a 3SDVAR system
using vorticity and divergence background fields, referred to as a V-D 3DVAR
system, could be a good candidate.

2. THEORY

Consider an ideal case where an observation of U is at the grid point (7,
j, k) for simplicity. An S-V 3DVAR using a second order finite difference
scheme has a cost function with the following term o? as it is a term from
the observation part J, of the cost function,
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The derivatives of this term are
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If o is negative, for instance, a gradient-dependent minimization algorithm
will reduce v; j 11, and increase v; j_1x, a negative gradient direction. If ro-
tational wind dominates the velocity, this results in negative increments on
Uijior and U;j_o k. Without grid correlations, this can be seen clearly in
Fig. 1. Increasing the smoothing effect of a recursive filter causes this wave
to become longer, but the negative increments remain and are expanded be-
yond (i, j, k), (see Fig. 2). If waves are longer than the distance between
observations, the negative effect may go away; otherwise these negative in-
crements become nonphysical errors to the increment field. Thus an S-V



3DVAR leaves nonphysical errors if it is used to resolve shorter waves than
what observations can resolve.

This problem cannot be blamed on the finite difference scheme used.
Since streamfunction and velocity potential are integrals of a velocity field,
a background using streamfunction and velocity potential means that we re-
quire that the integrals of a velocity field are constants at the same values as
the background. Thus, if a U component of the velocity field approaches an
observation that is different from the background, it will change the integrals.
If there are no other observations in the neighborhood to resolve the wave-
lengths, the U values in the neighborhood must move the opposite direction
so that the integrals remain the same. Figure 3 demonstrates this clearly in
one-dimensional space. When the C curve tries to fit an observation, there
are always two opposite curvatures associated with it locally.

3. CONCLUSIONS

Based upon the discussion, an S-V 3DVAR may have a problem providing
a good analysis on small scales. An S-V 3DVAR not only tends to have
higher weights on observed short waves, but also has nonphysical errors in
its increments. If the observations contain long wave information, an S-
V 3DVAR may discard this information unless a strong recursive filter or
correlation is applied; otherwise it could result in more nonphysical errors.

Before a data assimilation is performed, there should be a clear goal re-
garding an analysis. If larger scale differences exist between background and
observations, a V-D 3DVAR would be a good candidate as it provides an
analysis with different scales based upon the information provided by an ob-
servation network. It provides an analysis with larger weighting functions for
observations of long waves, and background for short waves. Figure 4 demon-
strates what the analyses of all 3DVAR systems look like when analyzing a
single observation, in which a recursive filter with a smoothing parameter of
0.5 is applied to an S-V and V-D 3DVAR.

When a model background can accurately describe long waves, a U-V
3DVAR with a recursive filter or other covariance schemes would be a better
choice although in this case, OI also may be a good candidate to use.

Even though other data assimilation techniques are available now, a



3DVAR analysis is simple, direct and efficient. In choosing a proper form
of 3DVAR, it could yield an analysis which the other techniques have dif-
ficulty outperforming. In the future, we will evaluate how good a 3DVAR
analysis is if it is chosen properly.
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Figure 1: a) Streamfunction and b) U from an S-V 3DVAR for a single
point observation without recursive filter, where darker areas are positive
and lighter areas are negative.
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Figure 2: U for a single point observation from an S-V 3DVAR with smooth

parameter 0.1 and 0.5.
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Figure 3: An “S-V” 1DVAR analysis with observations marked with black
dots. Curve A is the observation curve; B the background curve and C the
1DVAR analysis.



Figure 4: U components for a single point observation from a) S-V, b) U-V,
and c) V-D 3DVAR.



