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1. INTRODUCTION

A fully- or semi-implicit nonhydrostatic model
(e.g., Kar et al. 2004) requires that a solution
to a Helmholtz equation be obtained at every
time step. In the terrain-following coordinates
employed by most models (e.g., Yeh et al. 2002)
the Helmholtz operator assumes a general non-
separable form, even when the model state is
arbitrarily close to one of stably stratified rest,
and the direct application of efficient Fourier
transform methods is precluded. We are examining
a solution strategy in which the Helmholtz forcing is
first interpolated to a Cartesian terrain-intersecting
grid, so that the interior solution operator very
closely approximates a separable, symmetric and
horizontally homogeneous operator of algebraically
simple and constant coefficients, which a Fourier
method then efficiently solves. The reconciliation
of the original boundary conditions over the terrain
surface is then accomplished, to a very close
approximation at least, by the construction, via a
surface transform of the diagnosed residual from a
preliminary trial solution, of a corrective forcing.
A second iteration of the Fourier solver will now
produce a solution in the Cartesian grid essentially
consistent with the terrain boundary condition, so
that a further interpolation back to the model’s
native grid achieves the original objective. By
permitting the vertical portion of the grid for the
solver to differ from that of the model we are
free to choose from a much more general class of
model vertical coordinates than would be the case
if the choice were to be dictated by the requirement
of numerical efficiency of the Helmholtz solver
constrained to use this same grid.

In section 2 we summarize the derivation of
the Helmholtz problem and its lower boundary
condition. Section 3 shows how the homogeneous
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Figure 1. Schematic depiction of the embedding of terrain
within the cartesian grid employed for fast-solution of a
homogeneous Helmholtz problem. Internal forcing terms
applied at the circled locations below the terrain allow the
helmholtz solution in the region above the terrain to become
approximately consistent with the inhomogeneous problem
in which vertical Robin-type conditions are satisfied along
the terrain surface.

Helmholtz problem may be solved through the use
of double Fourier transformation in the horizontal.
Section 4 describes the strategy used to tackle the
non-homogeneous problem that pertains to the case
where the physical lower boundary is not uniformly
horizontal. A progress report of this ongoing study
will be presented at the conference.

2. THE HELMHOLTZ EQUATION FOR
NONHYDROSTATIC DYNAMICS

In Purser and Kar (2002) it is shown how
the non-hydrostatic perturbation equations about
a static isothermal atmosphere may be expressed
in a rather simple form when the perturbation
variables are carefully scaled to make the total
energy proportional to the integrated sum of
squares of these variables. In three dimensions, with
Cartesian coordinates, (x,y, z), with scaled velocity
components (u,v,w) scaled pressure perturbation
7 and scaled potential temperature perturbation 6,



the resulting perturbation equations become:
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In these equations the constants, ¢, L and N are,
respectively, the sound speed, the “Lamb height”
and the Brunt-Viisdla frequency, all defined in
Purser and Kar (2002). The bottom boundary,
being an impermeable surface, forces the wind
vector there to become tangential to the terrain

slope:
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Suppose the time discretization of a generic
prognostic equation,
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takes the form,
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where the de-centering parameter € is now absorbed
into the time step fraction 7 defined by:
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For the perturbation equations (1) this time dis-
cretization can be shown to imply that a Helmholtz
equation in one of the variables, say w, at the new
time level n is obtained with the form (dropping
subscript n):
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and R denotes the accumulated right-hand side
forcing terms. The connection with the vertical
velocity is through:

c(%—k%)wz—ww. (8)

This leads to a mixed (“Robin”) bottom boundary
condition over terrain whose slope can be neglected,
and where therefore w vanishes. We now review
how Fourier methods may be exploited to solve this
problem.

3. FOURIER SOLUTION OF THE
HOMOGENEOUS PROBLEM

It is well known that Fourier methods may
be applied to find solutions of a broad range of
problems in numerical partial differential equations
(for example, Schumann and Sweet 1988, Moorthi
and Higgins 1992) provided there is a sufficient
degree of spatial homogeneity in the form of the
problem. In the case of Helmholtz equation (5) with
homogeneous bottom boundary conditions, we may
replace the horizontal Laplacian operator (7) by:

Vi, = —(k* + ) = k], 9)

where (k,£) = k are the horizontal wave numbers
associated with the double Fourier transform:

(k) = / / w(z, y) expl—i(kz + fy)|dw dy.  (10)

Then (5) reduces to an ordinary differential equa-
tion in z for each Fourier component:
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With suitable boundary conditions, top and
bottom, (11) may be solved numerically by a fast
tri-diagonal solver for each Fourier component.
However, the horizontally homogeneous problem to
which this approach applies is not quite the problem
we wish to solve. The next section outlines an
iterative adaptation of the Fourier method that
treats the inhomogeneous problem.



4. SOLVING THE HORIZONTALLY
INHOMOGENEOUS PROBLEM

If the numerical grid domain is expanded, as
in Fig. 1, to properly contain the physical (above
terrain) portion together with a few additional sub-
terranean grid points, then in principle, we are at
liberty to include additional right-hand side forc-
ing terms in (5) below terrain in order that: (i) the
proper physical bottom boundary condition implied
by (2) holds at each vertical grid-column’s inter-
section with the terrain surface; (ii) the numerical
grid’s bottom boundary condition remains horizon-
tally homogeneous. In this case it is still feasible
to employ the numerically efficient Fourier solution
procedure over the expanded domain.

Since there is precisely one physical bottom
boundary condition per vertical grid column, we
need one (and only one) discretionary degree of
freedom per column in setting up the auxiliary
forcing. However, we are free to distribute this
forcing in proportion to any weighting profile that
fits the vertical space available between the physical
and numerical lower boundaries. The circles of Fig.
1 show a possible choice for the locations where
these weight functions are nonzero, which happens
to be the first three grid points below ground in
each column in this example.

In order to maintain, as far as possible,
a homogeneous relationship beween the vertical
auxiliary weight profile and the terrain altitude in
all the columns, we suggest that: (i) the weight
profile be essentially a vertical interpolation stencil
to a target point located a constant distance below
the terrain altitude, Z(z,y); (ii) the numerical
grid’s bottom boundary condition for (5), and hence
for (11) be the “natural” condition that simulates
an infinite downward continuation of the domain
with a vanishing right-hand side forcing. In the case
of (11) this latter condition, applied at the bottom
boundary z = z* of the numerical domain, can be
seen to be:
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as a consequence of the factoring of the left-hand
side of (11) into a symmetric pair of first-order
operators associated with exponentially decaying
characteristic solutions in either the upward or
downward directions:
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The proposed solution procedure is summarized
as follows:

i) Interpolate the incremental implicit equa-
tions for each of the prognostic variables from model

variables and grid to rescaled perturbation variables
and expanded Cartesian numerical grid;

ii) Form an interim solution by the Fourier
method without the auxiliary forcing;

iii) Diagnose the residual error in the physical
boundary condition (2) at the interpolated altitude
Z(x,y) corresponding to the terrain surface;

iv) Form the auxiliary subterranean forcing
terms in response to the diagnostics from step (iii)
and solve by the Fourier method a second time.

v) Back-substitute adjustments to other scaled
perturbation variables and interpolate them back to
the model’s grid and variables.

In step (iv) the auxiliary forcing is formed
as the product of each column’s weight profile
(see discussion above) and a modulating function,
s(z,y), of horizontal position. If the diagnostic of
residual error in step (iii) is denoted, e(x,y), then,
passing from step (iii) (diagnosing error) to step
(iv) (correcting that error) requires that we are
able to carry out the linear inversion involving the
Jacobian, or sensitivity, of each component of e with
respect to each component of s. Fortunately, for
terrain that is not too steep, a good approximation
to this inversion can be obtained by working in the
horizontal Fourier domain, where the corresponding
Jacobian of é(k.) with respect to 3(ks) becomes
approximately diagonal:
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and the inversion is therefore relatively trivial.
5. DISCUSSION AND CONCLUSION

The distinction we have introduced between
the grid used by the model’s dynamics and the
more regular Cartesian grid used purely in the
context of the Helmholtz problem means that
adopting this proposed solution strategy frees us
from the constraint that the model grid is also
one in which a numerical elliptic solver is easy to
apply. In particular, the present strategy may be
particularly well-suited to a model whose vertical
grid coordinates has, at least in part, the features
of an isentropic framework, where a large variation
can potentially exist in the thickness of model layers
from one location to another. The advantages of
such a framework for modeling have been discussed,
for example in Uccellini et al. (1979); Bleck and
Benjamin (1993); Johnson et al. (1993).

We are presently at an early stage in the inves-
tigation of this strategy, so that, at the time of writ-
ing, it remains unclear whether the procedure sug-
gested here is competitive, in terms of numerical ef-
ficiency, with existing elliptic solvers (e.g., Thomas
et al. 2003). Also, it is not yet clear whether the ap-
proach is seriously jeopardized in practice by steep



topography, by an over-simplification of basic lin-
earization, or other difficulties. We expect to be
able to say more about this at the conference, in the
light of our ongoing experience with the approach
described.
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