
13.2 PLYMOUTH STATE UNIVERSITY’S ELECTRONIC MAP WALL

James P. Koermer*, Eric G. Hoffman and Theodore T. Wisniewski
Plymouth State University
Plymouth, New Hampshire

1. OVERVIEW

 With the impending demise of the National
Weather Service (NWS) facsimile map service and
reductions in similar maps available over the
Internet, the Plymouth State University (PSU)
Meteorology Program conceived and created an
electronic map wall. As the next generation
replacement of the previous paper map wall, the
electronic displays allow for full color renderings,
animations, and automatic updates of a wide
variety of meteorological products from models to
satellite imagery.
 The initial concept was conceived during the
spring of 2002 when the PSU Development Office
was seeking ideas for new technological initiatives
that might be of interest to prospective donors or
funding agencies in conjunction with the
Meteorology Program and other sciences moving
into a new building during the summer of 2003.
There was to be a concerted effort to seek
additional capital funding to bring state-of-the-art
equipment and capabilities into this new facility.
The original configuration envisioned 12 display
monitors, each driven by a dedicated networked
computer. A few would be readily interactive and
the others would have pre-scheduled displays.
 However, during the following months, several
configurations were tested and we soon found that
it was possible to drive multiple displays from a
single CPU using additional graphics cards. This
discovery allowed us to expand the vision to
include more monitors, since we would need fewer
CPUs. Further refinements of the plans came after
we were able to get into the new science building
during construction and scope out available space
and after funding had been secured.
 This paper will describe the details of the
evolution of the PSU map wall project from the
initial testing to final configuration. We will also
discuss the problems encountered along the way
and the methods and/or equipment that we used
to overcome them.

*Corresponding author address: James P.
Koermer, MSC#48, Meteorology Program,
Plymouth State University, Plymouth, NH 03264;
e-mail: koermer@plymouth.edu.

2. MULTIPLE DISPLAYS FROM A SINGLE CPU

 The idea of a single CPU to drive multiple
displays had some important benefits. Among
them, would be a significantly lower cost per
display, such as fewer CPUs, lower associated
power and network infrastructure costs, and
reduced systems administration requirements.
 Our initial success involved using a spare
DELL GX-400 and using multiple PCI graphics
cards. This system seemed to accept multiple
older NVIDIA 32MB cards without problem. Using
FreeBSD as the operating system and XFree86
for the graphics, we were able to drive to separate
independent displays. With these types of cards,
we could get four cards working on this machine.
 Since we would need additional video cards,
we purchased some additional ATI Radeon 64MB
PCI video cards. However, we had no significant
success with these cards. They worked
wonderfully alone, but seemed to have conflicts
when a second card (identical or different type)
was installed.
 Since our computer cluster was scheduled for
upgrade, we planned to use its DELL GX-1
computers that were being replaced to drive the
displays rather than purchase new systems.
However, we quickly discovered that these
systems did not like to function with more than two
video cards at a time. That had not been a
problem with the GX-400. We suspected that the
GX-1 problem may have been due to the video on
the motherboard of the GX-1.
 As a result, we had several bare bones PCs
built with no onboard graphics. These would also
give us a new hard drive and faster processor for
the display systems. Much to our chagrin, these
systems also balked with more than three cards
installed. With our evolving plans that now
included 32 LCD panels, we really wanted to have
4 or 5 displays per computer as a minimum. So, it
was back to the drawing board.
 Fortunately, we came across a fairly new and
innovative graphics card—the MATROX G200
MMS (Multi-Monitor Series) Quad as shown in
Figure 1. One of these PCI cards could drive four
monitors and the product specifications indicated
that up to four of these cards could be used in a
single PC could actually drive 16 monitors.

Figure 1. A single MATROX G200 Multi-Monitor
Series PCI Video card and VGA connector cables.

 This card proved to be the answer to our
problem. It worked as advertised and eliminated
video conflict issues. We decided to use two cards
in four bare bones computers to drive the 32 LCD
monitors. More than two cards would have been
an extremely tight fit in the available PCI slots in
these computers. It also would have meant that
we would have needed longer VGA cables from
some of the displays to reach the computer. We
were also fairly certain that the memory
requirements might not be sufficient to drive more
than eight displays.

3. DISPLAY SOFTWARE FOR LCD MONITORS

 As mentioned earlier, FreeBSD and XFree86
were used for the operating system and X-window
system, respectively. The map wall computers
were set up to each control eight LCD monitors
that were accessible as display devices, :0.0, :0.1,
:0.2, …, :0.7.
 Since the Matrox G200 Quad has 32MB of
onboard RAM, it was necessary to configure
XFree86 to allocate 8MB and set MGASDRAM
options for each video device on each G200.
Initially, we had some difficulty with screen
remnants (portions of a previous image not being
erased) when a new image was displayed. This
was overcome by tuning the video configuration
with the following parameters for each video
device (HWcursor to off) and (ShadowFB to true).

Our original configuration also had the color depth
set to 24-bit, but we backed this off to 16-bit color
to enhance network performance and reduce
memory requirements.
 We tested a number of different applications
for the purpose of displaying the images and
image loops. Quickly we settled on two
components of the ImageMagick application suite,
“display” and “animate”. These applications make
it very easy to direct the graphics to a specific
monitor. Image files could be pulled from the local
hard drive, a networked drive, or even through a
web link. The applications also did not have to be
run on the individual map wall computers, they
could be run on a remote server and displayed on
a map wall monitor. Other important benefits of
these applications include that the LCD monitors
could run in full screen mode (no window frames,
buttons, etc.); that images could be resized on the
fly to fill the full screen; and that they could be
embedded in UNIX shell scripts.
 When included in a looping script, the “display”
command has the added benefit that newly
updated images will automatically be displayed.
As a result, the script can run and loop
continuously with no special intervention. On the
other hand, the “animate” command does its own
internal looping and in order to access new
images for the loop, the program has to be
stopped and then restarted.
 The appendix contains several examples of
scripts. The first script shows how the “display”
command can be used to run a slide show of
various surface maps, which have been locally
generated at Plymouth State. Most of these
products are generated at a 1024x768 pixel-
resolution solely for the map wall screens that are
set for that resolution, but this script also shows
how we can use a smaller raw image and enlarge
it to fit the screen. Comments are provided in the
script to help explain most of the details.
 The second example shows the short script
used to animate a sequence of the last 24 Gray
(ME) NEXRAD images that are locally produced.
Since they also were not built at 1024x768
resolution, they are resized by using the
“geometry” option. As indicated earlier, new
images for the loop are not automatically
accessed with the “animate” command, hence
these processes need to be stopped and then
restarted, when new data become available. This
is done through another script that is run every
minute. If no new data are found, it exits;
Otherwise, it will find the processes, stop them
and then restart the animation.

4. SETUP FOR PLASMA SCREENS

 As part of the electronic map wall, space and
resources allowed us to add two large plasma
screen displays to the configuration. We deemed it
important that these be fully interactive, but still
capable of running automated displays like the
LCD monitors. Because of this, we felt that each
plasma screen should have its own dedicated
CPU and use MICROSOFT XP Professional for
the operating system.
 XP offered all the standard features, such as
web browsing. We could also run the FX-Net
weather visualization package from the Forecast
Systems Laboratory. By using Xwin32, users
could also run UNIX applications (e.g. McIDAS,
GEMPAK, WXP, and IDV) for accessing and
displaying weather data from the program’s UNIX
servers.
 When not in interactive mode, these systems
can use MICROSOFT PowerPoint and an add-in
called “Live Image Update” to run a looping slide
show sequence and/or multiple animations (e.g.
animated GIFs), similar to the other LCD systems.
The add-in insures that the latest images will
automatically get displayed.

5. FINAL MAP WALL CONFIGURATION

 During the testing of hardware and software
components, we were also planning for the site
preparation needed for the map wall. After
measuring the available space, identifying the
most likely sizes of the display devices, and
estimating the number of CPUs needed to drive
the displays, we designed a large cabinet that was
only 6 inches deep on top with a wider base to
hold the CPUs. The LCD and plasma monitors
were to be mounted on the large face of the
cabinets with the VGA and power cables fed from
the monitors, through holes in the face and
running behinds the panel down to the CPUs
below.
 Based on these plans, a custom cabinet was
built and installed against a wall that was
augmented with many additional power outlets
and network connections. The 32 19” LCD panels
and two 42” plasma monitors were mounted and
connected to a total of six CPUs. Four are used
with the MATROX cards to support the 32 LCD
displays and the other two drive the plasma
screens. The final cabinet layout is shown below in
Figure 2.

Figure 2. The Plymouth State University electronic map wall cabinet display layout. CPUs are housed in
the wide base behind the cabinet doors.

 Many of the currently displayed products are
either Plymouth State University Weather Center
web products, but some maps were designed
exclusively for the map wall. There is a wide
variety of products including forecast model maps,
satellite images/loops, radar images/loops, surface
and upper air maps, thermodynamic diagrams
based on radiosonde observation and forecast
soundings, max/min/24-hour precipitation maps,
meteograms, and NLDN lightning summary/loops.

6. CURRENT ACTIVITIES AND FUTURE PLANS

 The displayed products can be considered
works in progress. We are still experimenting with
timings, layout, contents, and animations—both
locally produced and some accessible via the web.
Some ideas include displaying the last several
days of upper air charts along with the current
ones either as an animation or slide show.
 As we start to settle on products, we also want
to set up some long-term archives for displayed
maps. Access to these data would be available for

recall via an interactive web page, so that they
could be used to review interesting situations and
for other case studies.
 On the hardware side, our only surprise after
getting the systems functioning has been the high
memory utilization both for the windowing system
and for running the display and animate programs.
CPU utilization is not so pronounced, but we are
currently acquiring additional memory (2GB up
from 512MB) for the LCD map wall computers.
This will allow us to run the display or animate
scripts directly from the map wall computers to
reduce load on the network. Instead, we will be
able to push new images to the map wall
computers as they become available. This change
will also keep display operations on fewer
computers, making the map wall system easier to
administer.

7. ACKNOWLEGEMENT

 The Plymouth State map wall project was
funded through NOAA award, NA03NWS4680003.

APPENDIX

#!/bin/csh -f
Script: display.surface
This script displays the latest CONUS surface maps including NCEP frontal
positions, temperatures, dewpoint temperatures, weather depiction,
streamlines, heat indices, and wind chill temperatures in sequence at 15
second intervals.
Notes:
- All maps are sent to mapwall03 display :0.0
- Display resolution is set to 1024x768
- Frontal map needs to be resized with the “geometry” option

Switch to directory with maps
cd /home/mapwall/maps

START:
display -display mapwall03:0.0 -size 1024x768 -geometry 1024x768 \
-window root -backdrop -delay 1500 psc_usfront.gif
display -display mapwall03:0.0 -size 1024x768 -window root -backdrop \
-delay 1500 temp.gif dewp.gif depict.gif strm.gif heat.gif wchill.gif
goto START

Note 1500 delay = 15 seconds (each unit is 1/100 of a second)

Example 1. Script to “display” a sequence of maps.

#!/bin/csh –f
Script: animate.GYX
This script animates the last 24 GYX NEXRAD images at .4 second intervals.

Notes:
- Animation is sent to mapwall03 display :0.7
- Display resolution is set to 1024x768
- Images need to be resized with the “geometry” option

Switch to directory with maps
cd /home/mapwall/maps

Start animation
animate -display mapwall03:0.7 -geometry 1024x768 -size 1024x768 -window root
-backdrop -delay 40 GYX.101.gif GYX.102.gif GYX.103.gif GYX.104.gif \
GYX.105.gif GYX.106.gif GYX.107.gif GYX.108.gif GYX.109.gif GYX.110.gif \
GYX.111.gif GYX.112.gif GYX.113.gif GYX.114.gif GYX.115.gif GYX.116.gif \
GYX.117.gif GYX.118.gif GYX.119.gif GYX.120.gif GYX.121.gif GYX.122.gif \
GYX.123.gif GYX.124.gif
exit

Example 2. Script to “animate” a sequence of maps.

#!/bin/csh -f
Script: update.GYX
This script checks to see if a new GYX radar image has been built. If it
has, the currently running animation processes are found and killed, then
the animation is restarted.

setenv PATH /usr/bin:/etc:/usr/sbin:/bin:/usr/X11R6/bin:/sbin:/usr/local/bin

Check to see if a new GYX.gif was built

cd /home/mapwall/maps
set current=`ls -l GYX.gif | cut -c41-45`
set last=`cat last_GYX`
if ("$current" == "$last") exit
echo $current > last_GYX

Get the associated process PIDs and kill processes

set pid1=`ps -auwx -w | grep animate.GYX | grep -v grep | cut -c8-12`
set pid2=`ps -auwx -w | grep mapwall03:0.7 | grep -v grep | cut -c8-12`
echo pid1 is $pid1
echo pid2 is $pid2
kill -9 $pid1 $pid2

Start animation program
/home/mapwall/slide_shows/animate.GYX &

exit

Example 3. Script used to update a running animation.

