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1. Introduction 
 

Meteorologists at the National Center for 
Atmospheric Research (NCAR) have developed 
algorithms for the diagnosis and prognosis of 
aircraft icing over the CONUS and Alaska.  
Numerical models provide data for all of the 
products and their accuracy is very important to 
the correct representation of icing conditions.  The 
Current and Forecast Icing Potential (CIP and FIP, 
respectively) algorithms (Bernstein et al., 2004; 
McDonough et al., 2004) use the NCEP Rapid 
Update Cycle (RUC) model.  Similar products are 
also created over Alaska (CIP-AK and FIP-AK) 
and use the Alaska ETA as an input. 
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One way to verify the model accuracy is to 
compare the forecasts with NWS rawinsonde 
observations.  These observations allow 
verification throughout the depth of the 
atmosphere and at points across the model 
domain.  Among other fields, the icing products 
use temperature (T) and relative humidity (RH) 
forecasts to create a vertical profile of the 
atmosphere that can be compared to observed 
profiles from balloon-borne soundings.   

It is known that the RUC produces more 
accurate forecasts with the introduction of the 20 
km grid (Benjamin et al., 2003; Schwartz and 
Benjamin, 2002).  Benjamin et al. show that the 
average temperature and relative humidity errors 
vary from 0.9 to 1.6 °C and 15 to 19%, 
respectively.  Temperature was most accurate in 
the mid levels while relative humidity performed 
best near the surface and at the tropopause for all 
forecast lengths.  In order to improve the icing 
algorithms we must determine the situations in 
which the model performs well and adjust our use 
of them accordingly.  For example, the algorithms 
assume that the models have problems 
forecasting moisture.  This is taken into account by 
using fuzzy logic member ship functions that allow 
for the possibility of icing at relative humidities well 
below saturation (Bernstein et al., 2004; 
McDonough et al., 2004).  If it can be shown that 

the model performance in predicting moisture is 
better than expected then the algorithms may be 
changed to make that function less charitable. 

For the comparisons it was assumed that the 
rawinsonde observations are the “truth”.  However, 
instrument errors and biases have been 
documented.  Rawinsonde observation errors are 
generally accepted to be 0.5 °C for temperature 
and about 8% for relative humidity (Benjamin et 
al., 2003).  Wang et al. (2002) found biases in the 
relative humidity measurements of certain 
rawinsondes due to a variety of factors such as 
contamination and temperature dependence. 
 

The methodology used for the comparisons 
will be described in section 2.  Verification results 
for the RUC and Alaska-ETA models will be 
discussed in section 3.  The potential impact of the 
model error on icing products will be presented in 
section 4. 
 
2. Methodology 
 

Rawinsondes are launched each day at 0 and 
12 UTC from stations across the CONUS and 
Alaska (Fig. 1).  For this study comparisons are 
made between the profiles of T and RH from these 
soundings and coincident forecast profiles from 
the shortest-term forecast available from each 
model.  This means that 3-hour forecasts from the 
9Z run of the RUC and 6-hour forecasts from the 
6Z run of the Alaska ETA were used to compare to 
the 12Z rawinsonde observations.  The current 
icing products (CIP and CIP-AK) use these runs 
for the diagnosis of icing while the forecast icing 
products (FIP and FIP-AK) use them plus longer-
term forecasts to create prognosis.  Although FIP 
and FIP-AK also make forecasts out to 12 hours, 
only the 3-hour forecasts will be verified in this 
study, as they are the most commonly used 
products for the icing diagnoses.  It is expected 
that the 3-hour forecast will provide the most 
accurate forecast with some degradation in the 
longer-range (Benjamin et al., 2003). 

For each case the nearest model grid point to 
the sounding location was chosen and a vertical 
profile was extracted from the model.  The 
rawinsonde observations were interpolated to the 
model surfaces to allow for a direct comparison.  
This interpolation was only done if there was a 



3. Model Comparisons 

(a) 
 
 
 
 
 
 
 
 
 
 
 
(b) 

Figure 1.  (a) CONUS and (b) Alaska 
rawinsonde sites. 

 
a) RUC 
 
This comparison used CONUS soundings and 

40 km (degraded 20 km) RUC output from a four-
month period between 9/15/2002 and 1/15/2003. 

Figure 2 shows the temperature bias for all of 
the stations throughout the depth of the 
atmosphere.  Temperature is quite accurate, with 
the bias being less than half a degree too warm in 
almost every case.  There was no obvious 
geographical tendency in the temperature bias 
field.  However, examining the absolute average 
difference (Fig. 3) shows that, while the overall 
averages are less than 1.4 °C, the model seems to 
perform better in the Southeast, Southern Plains, 
and Ohio Valley. 

As expected, relative humidity has higher 
average biases and differences because it is a 
more difficult field to predict.  The model showed a 
dry bias across the CONUS (Fig. 4) with smaller 
biases in the Gulf and Atlantic Coast regions.  
Overall, it was only 3.5% too dry on the average.  
The Pacific Coast, Rocky Mountain, northern High 
Plains, and Great Lakes regions actually have the 
strongest dry biases. Figure 5 shows the average 
absolute difference for the RH field.  The west has 
the highest values, especially along the Pacific 
Coast, while the Central and Southern Plains 
appear to be the most accurate for moisture 
prediction.  An examination of the distribution of 

sounding observation within 1000 ft. (305 m) of the 
model surface. 

Figure 2.  Average temperature bias in 
degrees C.  Positive values represent 
average model temperatures warmer than 
the observed and vice versa.  The dot in the 
lower left corner represents the overall 
average for all stations. 

Distributions of model vs. observations were 
created to get an idea of the overall accuracy and 
bias.  Average absolute differences and biases 
were also calculated for each station to identify 
possible geographic biases.  These were 
calculated by taking the difference between the 
model and observation and calculating the 
average, taking into account the sign of the 
difference (bias) or not (absolute difference).  For 
icing products we are most interested in model 
performance in conditions where icing might be 
expected (e.g. temperatures between 0 and –10 
°C and RH > 80%).  The data were further divided 
into ten-degree temperature bins to gauge the 
model performance in these areas. 
 
 
 
 
 
 



Figure 4.  Average RH difference (bias) in 
percent.  Negative values represent average 
model RH values drier than observed.  The dot 
in the lower left corner represents the overall 
average for all stations. 

Figure 3.  Average absolute temperature 
difference in degrees C.  The dot in the lower 
left corner represents the overall average for all 
stations. 

Figure 5.  Average absolute RH difference in 
percent.  The dot in the lower left corner 
represents the overall average for all stations. 

Figure 6.  Distribution of model vs. 
observed RH values for the RUC.  The 
colors and their associated ranges 
represent the number of matching points 
for a certain RH value (in hundreds). 

the model vs. observed RH (Fig. 6) shows that 
there is a large spread of values across the 
domain.  At high RH values there does not appear 
to be a very large bias, which is encouraging.  The 
dry bias is especially evident at low RH values.  
This may have more to do with the quality of 
observations at low RH and cold temperatures 
rather than the model itself.   

It appears that the strong dry bias at low RH 
values may be skewing the overall results.  Since 
a dry bias in areas of very dry air will not harm the 
algorithm’s performance all model relative 
humidities less than 30% were removed from 
further analysis.  The 30% threshold was chosen 
as the lower bound because that is where the CIP 

and FIP relative humidity maps begin to show non-
zero interest in the relative humidity values 
(Bernstein et al., 2004).  Leaving out these values 
had a dramatic effect on the bias (Fig. 7).  The 
overall average bias went from 3.5% too dry to 
1.6% too moist, and the majority of stations are 
now showing a moist bias.  Examining individual 
stations also shows a remarkable reversal.  For 
example, KTFX (Great Falls, MT) went from a 5% 
dry bias to a 5.4% moist bias. 



An analysis was done on the accuracy of the 
RH predictions in 10 °C bins in the 20 to –60 °C 
range.  Figure 8 shows the average RH bias for 

the 0 to –10 °C bin, where temperatures are ideal 
for icing to occur.  The model is fairly accurate in 
this temperature range with less of a dry bias 
(0.6%) in this range than for all temperatures 
(3.5%).  One feature that sticks out is the change 
from a dry bias in the Rocky Mountains and Plains 
to a moist bias in the Southeast and along much of 
the Pacific Coast.  An examination of the average 
absolute difference (Fig. 9) shows the model to be 
the most inaccurate in these high bias areas.   

Figure 8.  As in Fig. 4 but for temperatures 
between 0 and –10 °C. 

Figure 7.  As in Fig. 4 but for all relative 
humidities ≥ 30%. 

RH performance degrades with decreasing 
temperature (not shown).  The large spread and 
dry bias at low RH values shown in Figure 6 
appears to come mostly from these cold 
temperature bins. 
 

b) Alaska ETA 
 
Alaskan soundings and 45 km (degraded 

11.25 km) Alaska ETA output were compared for a 
five-month period between 7/10/2002 and 
12/17/2002.  The earlier time frame was chosen 
because the icing season begins earlier in Alaska 
with a maximum in the fall before tapering off 
somewhat in the winter due to the extremely cold 
temperatures.   

Like the RUC, the AK ETA was very accurate 

Figure 10.  Average temperature bias in 
degrees C.  Positive values represent average 
model temperatures warmer than the observed 
and vice versa.  The dot in the upper right 
corner represents the overall average for all 
stations. 

Figure 9.  As in Fig. 5 but for temperatures 
between 0 and –10 °C. 



in its temperature forecasts.  Figure 10 shows the 
average bias for the temperature fields of the 
model and observations for the twelve Alaska 
stations combined.  As in the RUC, there was a 
slight warm bias to the model, but it was less than 
half a degree in every case but one.   

Figure 11.  Distribution of model vs. observed 
RH values for the AK ETA.  The colors and 
their associated ranges represent the number 
of matching points for a certain RH value (in 
hundreds). 

 

Figure 13.  Average absolute RH difference 
in percent.  The dot in the upper right corner 
represents the overall average for all 
stations. 

Figure 12.  Average RH difference (bias) in 
percent.  Negative values represent average 
model RH values drier than observed.  The 
dot in the upper right corner represents the 
overall average for all stations. 

 

Again, the relative humidity field shows more 
variability than the temperature. Figure 11 shows 
the relative humidity distribution for all stations.  
There appears to be a dry bias of approximately 
5% in the model at high RH values (>75%), with 
little to no bias either way between 30% and 60%.  
However, the spread between the measured and 
model values can be quite large.  In some cases 
the model is predicting low relative humidity values 
where the sounding is reporting near saturation 
and vice versa.  Examining the overall bias (Fig. 
12) shows the model to be slightly dry (0.5%) on 
the average with an overall accuracy (Fig. 13) in 
line with the RUC.  Figure 11 did not show a 
strong dry bias at low RH values and this is the 
main reason for the small overall dry bias.  
However, it is still of value to the algorithms to 
identify any bias in RH values ≥ 30%.  Figure 14 
shows the relative humidity biases for this 
situation.  Once again, there is a moist bias, but it 
appears that it may be skewed somewhat by the 
high values at PABR (Barrow, northernmost 



station) and PANT (Annette Island, far 
southeastern station).  These stations will be 
further discussed later.  However, all of the 
stations have less of a dry bias in this RH range. 

The data were once again divided into 10°C 
bins from -60°C to 20°C.  The model is quite 
accurate when the temperature is above -10°C.  
There is still a large amount of spread in the 
values for these warmer temperatures, but the 
bias is not as evident.  There is a slight moist bias 
for temperatures between 0 and –10 °C (Fig. 15).  
At colder temperatures (e.g. –20 to –30 °C, Fig. 
16) the spread between the predicted and 
observed RH becomes even larger.  Notice that 
the model does not predict RH values above 85% 
at these temperatures (–20 to –30 °C) even 
though there are soundings that are nearly 
saturated with respect to water.  The Alaska ETA 
microphysics package currently assumes that 
clouds glaciate at temperatures colder than –10 °C 
so that saturation with respect to water is 
impossible below this threshold (Brad Ferrier, 
NCEP, personal communication).  This upper 
bound on the relative humidity with respect to 
water decreases with decreasing temperature.  In 
the –50 to –60 degree bin the largest RH value 
predicted by the model is 65%. 

Comparison of a particular sounding side-by-
side helps to better illustrate how well the model 
represents the actual conditions.  Figures 17 and 

18 show model and rawinsonde plots of 
temperature and relative humidity from PANC at 
12Z on 12/17/2002.  The temperature profile 
shows a rather strong inversion about 2000 m 
above the surface.  The model reproduces it, but 
shows it to be weaker.  However, the model has 
the temperature and height of the inversion top 
almost exactly right.  The temperatures remain 
within two degrees up to around 10000 m, where 
they begin to diverge somewhat above the 

Figure 16.  As in Fig. 15 but for temperatures 
between –20 and –30°C. 

Figure 15.    Distribution of model vs. 
observed RH values for the AK ETA for 
temperatures between 0 and –10 °C.  The 
colors and their associated ranges represent 
the number of matching points for a certain 
RH value.

Figure 14.  As in Fig. 12 but for all relative 
humidities ≥ 30%. 

 



tropopause.  The height of the tropopause is also 
predicted very well.  The relative humidity fields for 
this sounding are also similar with the same 
trends, though the sounding suggests the 
presence of some low level clouds that the model 
doesn’t quite capture.  Between 3000 and 9000 m 
the RH fields are within about 5% of each other.  
Above the tropopause the fields diverge very 
quickly, as the model has essentially no moisture.  
The largest differences in both fields are above the 
tropopause, an area of no interest to the icing 
algorithms. 

Station Saturated Nearly Saturated 
PABR 50 548 
PAOT 466 1403 
PANT 101 311 
PAYA 997 2488 
PANC 427 1390 
PAOM 477 1507 

One interesting feature of the soundings 
revealed during this study was the lack of 
saturated or near saturated conditions at several 
sites (Table 1).  Barrow (PABR) and Annette 
Island (PANT) had such a low number of saturated 

conditions when compared to other stations that it 
bears further analysis.  This is especially true of 
PANT, which is located fairly close to and in much 
the same environment as Yakutat (PAYA).  Both 
stations are situated along the coast in the 
southeast part of the state.  However, PAYA has 
almost ten times the number of saturated 
conditions as PANT.  It is not clear why Barrow 
had such few saturated conditions during the 
period of interest, but may have simply been due 
to a lack of liquid clouds.  At Kotzebue (PAOT, the 
site nearest to Barrow) there were almost ten 
times the number of saturated conditions as in 
Barrow.  Because full saturation of an air parcel 
may not be measured properly it was determined 
that examining the number of observations of 95% 
or greater would help answer any questions about 
data quality.  When these near saturation 
conditions are taken into account the number of 
observations increases by about a factor of 3 for 
all stations except PABR, which increases by a 
factor of 11.  At Barrow near saturation occurs in a 
much higher percent of the total than at other 
stations.  Including the nearly saturated 
observations does very little to close the gap in the 
number of observations between PANT and 
PAYA.  This may help explain why these two 
stations (PABR and PANT) have the greatest 
moist bias (Figs. 12 and 14).  The model is 
predicting saturated or near saturated conditions 
far more often than they are being observed. 

Table 1.  Number of observations with RH = 100% 
(saturated) and RH ≥ 95% (nearly saturated) in the 
rawinsonde dataset for selected stations.  
Anchorage (PANC) and Nome (PAOM) are 
included as extra comparison points. 
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Figure 17.  Temperature soundings from 
PANC on 20021217 at 12Z. 
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Figure 18.  Relative humidity soundings from 
PANC on 20021217 at 12Z. 

There may be a consistent instrument or 
analysis error at these sites that could be resulting 
in a dry bias in the observations (Wang et al, 
2002). It is also possible that the rawinsondes 
being launched at PABR and PANT are 
manufactured by Sippican (formerly VIZ).  The 
hygristors used in these rawinsondes have a dry 
bias in areas of high RH, with observations greater 
than 95% very rare (Wade and Schwartz, 1993). 
 



4. Summary and Effects on Icing Products 
 
Temperature is well represented by both 

models with more spread and bias associated with 
the relative humidity field.  The differences in RH 
were smaller at warmer temperatures (i.e. lower 
altitudes) where icing is most common and grew 
larger with decreasing temperature.  Part of this 
can be attributed to model physics and part may 
be due to instrument inaccuracies.  Both models 
showed a slight warm and dry bias when 
considering all stations and altitudes.  However, 
there were some areas where these biases were 
reversed. 

Of concern to the algorithm developers is the 
correct identification of the presence of clouds and 
multiple cloud layers in model RH profiles.  
Because multiple cloud layers can vastly change 
the icing conditions, the identification of these 
situations is imperative.  These results can be 
used to help improve the cloud layer detection in 
the icing products by comparing observations of 
multiple cloud layers from the rawinsondes to the 
corresponding model sounding to improve the 
layer detection schemes. 

The icing algorithms are all fuzzy logic based 
systems that implicitly take model errors into 
account by using a set of membership functions 
for calculating icing potential (Bernstein et al., 
2004; McDonough et al., 2004).  This study shows 
that the approach is well founded, but that model 
outputs are somewhat more accurate than 
previously thought, allowing the RH membership 
function to be more restrictive.  If geographic 
biases continue to be observed they may play a 
role in how the model data are interpreted in 
different parts of the country as the algorithms 
continue to evolve. 
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