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1. INTRODUCTION

All types of end users who must make weather-
dependent decisions stand to benefit greatly from
knowing the expected accuracy of a particular fore-
cast a priori. Forecast accuracy varies both spa-
tially and temporally as a result of initial state and
model errors, which change as the atmospheric flow
evolves. Probabilistic weather forecasts derived from
numerical weather prediction (NWP) ensembles can
provide crucial information about the expected fore-
cast uncertainty.

It has been theorized that ensemble spread should
provide a measure of forecast uncertainty (Kalnay
and Dalcher 1987; Murphy 1988; Houtekamer
1993), such that high (low) spread events corre-
spond with high (low) forecast errors. The tradi-
tional approach to quantifying this so-called spread-
skill relationship has involved finding the correlation
between a measure of ensemble spread and the ac-
curacy of a particular determinstic forecast. How-
ever, using the simple statistical arguments outlined
by Houtekamer (1993, hereafter H93), there exists a
theoretical limit to the strength of this type of corre-
lation (Whitaker and Loughe 1998). From Eq. (33) in
H93, the correlation between the standard deviation
of perfect ensemble forecasts (σ) and the absolute
error of the ensemble mean (|Ē|) is limited by the
temporal spread variability. As the temporal variabil-
ity in spread (β) increases, so does the spread-error
correlation. In the upper limit of spread variability,

lim
β→∞

ρ(σ, |Ē|) =

√
2
π

. (1)

Therefore, spread-error correlation is not required to
be large, even for an ensemble that properly sam-
ples all sources of uncertainty (Whitaker and Loughe
1998).

The theoretical limitations of spread-error correla-
tion have been substantiated by empirical findings.
Using various measures of spread and accuracy with
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both perfect (Barker 1991) and imperfect (Kalnay
and Dalcher 1987; Molteni et al. 1996; Buizza 1997;
Whitaker and Loughe 1998; Moore and Kleemann
1998; Hamill and Colucci 1998; Stensrud et al. 1999;
Elsberry and Carr 2000; Goerss 2000; Ziehmann
2000; Hou et al. 2001; Grimit and Mass 2002; Sten-
srud and Yussouf 2003) models in a range of fore-
casting applications from tropical cyclone tracks to
mesoscale convective precipitation, the relationship
is usually highly scattered and correlation coeffi-
cients generally do not exceed 0.6–0.7. Potentially
higher correlations can be achieved by consider-
ing only cases with extreme spread (Whitaker and
Loughe 1998; Grimit and Mass 2002). Often the
linear relationship between spread and accuracy is
quite poor.

Some have concluded that variance-like mea-
sures of ensemble forecast spread are not the best
predictors of forecast accuracy. For example, Toth
et al. (2001) and Ziehmann (2001) suggest that cat-
egorical measures of forecast spread, such as mode
population or statistical entropy are more skillful at
discriminating between forecast successes and fail-
ures. A categorical analysis of this type requires that
ensemble forecasts and corresponding verifications
be divided into predetermined bins.

By expecting a linear relationship between ensem-
ble spread and forecast accuracy, one assumes that
forecast uncertainty and forecast error are equiv-
alent. In fact, forecast uncertainty is better de-
fined as the forecast error distribution, from which
any observed forecast error can be considered a
random variate. The trouble is that there is only
one sample available, making it impossible to know
the exact shape of that particular error distribution.
One solution is to group forecast errors together
from other cases and locations that potentially share
some common characteristic. This grouping can be
organized by ensemble forecast spread or another
aspect of the ensemble forecast. The distribution
of forecast errors in each group approximates the
shape of the true average error distribution over all
of those like samples.

When ensemble mean forecast errors are strati-
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fied according to their corresponding ensemble fore-
cast variances, an error distribution associated with
each variance bin is obtained. Essentially, ensemble
mean forecast error can be viewed as a multi-valued
function of ensemble forecast variance. Therefore,
it is not surprising that ensemble forecast variances
and ensemble mean forecast errors do not perfectly
correspond, since the data pairs do not fit a straight
line. On the other hand, it can be expected that en-
semble forecast variance should perfectly correlate
with the variance of the ensemble mean forecast er-
ror distributions (Wang and Bishop 2003).

Because of the need to consider the forecast er-
ror distribution, forecast error prediction should ide-
ally be undertaken within a probabilistic framework.
The traditional approach to forecast error prediction
has been inherently deterministic, even though its
basis is dervied from probabilistic considerations.
When applying a least-squares regression, as in the
spread-error correlation method, only the mean val-
ues of these error distributions are estimated. This
deterministic limitation underscores the need for the
problem to be defined in a fully probabilistic sense.

Skillful probabilistic error predictions can be de-
rived directly from the ensemble, provided that a rea-
sonably accurate forecast probability density func-
tion (PDF) can be produced. In practice, current en-
semble forecasts are severely biased, uncalibrated,
and limited in size, thus preventing accurate pre-
diction of the true forecast PDF. These limitations
are particularly pronounced for mesoscale predic-
tion of surface weather variables (e.g. Eckel 2003).
Unless these obstacles are overcome through su-
perior ensemble forecast generation and statistical
post-processing, an alternative method must be em-
ployed. Certainly, valuable uncertainty information is
contained within imperfect ensemble predictions that
could be utilized.

The goal of the present work is to more thoroughly
investigate the ability of imperfect short-range en-
semble forecasts (SREFs) to predict the mesoscale
errors of sensible surface weather forecasts, such as
those for wind and temperature. Previous work by
the authors has involved the analysis of spread and
error for near-surface wind direction forecasts from
a University of Washington (UW) SREF system over
the U.S. Pacific Northwest (Grimit 2001; Grimit and
Mass 2002). The approach used to quantify forecast
error predictability in those experiments has many
limitations, including the fact that it is inherently de-
terministic. The aim here is to extend the analysis of
mesoscale SREF spread-skill relationships to other
measures of spread and accuracy, additional sensi-
ble surface weather parameters, and a probabilistic

framework of forecast error prediction.

2. EXPERIMENTAL APPROACH

2.1 A Simple Stochastic Model Framework

A modified version of the H93 stochastic model
was developed to establish the expected upper limit
of both deterministic and probabilistic forecast error
predictability. A large sample size of fictional ensem-
ble predictions were generated stochastically, rather
than dynamically as in real ensemble forecasts. The
model was developed to account for the sampling ef-
fects of finite ensemble size and to allow for the use
of varying measures of spread and accuracy. The
simple model steps are as follows:

1. Draw the true forecast spread from a log-normal
distribution as in the H93 model using,

ln(σ) ∼ N(ln(σ̄f ), β2), (2)

with the mean forecast spread given by σ̄f and
β representing the standard deviation over time
of the spread.

2. Explicitly simulate ensemble forecasts by draw-
ing M values from the true distribution:

Fi ∼ N(Z, σ2); i = 1, 2, . . . , M, (3)

where Z is the mean of the true distribution.
Note that Z itself is drawn from a Gaussian cli-
matological distribution with mean Zc and vari-
ance σ2

c , where σ2
c � σ̄f

2 (assuming short-
range forecasts).

3. Draw the verification from the same distribution
as the forecasts:

V ∼ N(Z, σ2). (4)

4. Calculate the sample estimates of spread and
accuracy. For example, using the variance
(VAR) and absolute error of the ensemble mean
(AEM),

V AR =
1

M − 1

M∑
i=1

(Fi−F̄ )2; F̄ =
1
M

M∑
i=1

Fi,

AEM = |(F̄ − V )|.

5. Repeat the previous steps for many indepen-
dent realizations.



The stochastic ensemble forecasts may be treated
as perfect because the verification is drawn from the
same distribution. The only built-in limitation comes
from the finite sampling of the distribution, such that
the potential for poor spread estimation is larger at
smaller ensemble sizes. This mimics the situation
found in real-world forecast error prediction, where
the only estimate one has of the true spread is given
by the variation among the ensemble forecasts at
hand. Note that, the new model does not modify the
H93 assumptions that the ensemble member fore-
casts are perfect and that the statistics are purely
Gaussian.

The flexibility of this simple model allows for the
calculation of categorical measures of spread and
accuracy provided that the forecasts and verifica-
tions are partitioned into bins. The categories may
be determined from climatology, have a fixed width,
or correspond to critical thresholds that are user-
dependent. Attention is restricted here to climato-
logically equally likely bins. Within this categorical
framework, a measure of forecast uncertainty such
as the mode population (Mmode) can be defined by

Mmode = max(Mi); i = 1, 2, . . . , nbin, (5)

where Mi is the number of ensemble forecasts con-
tained in bin i and nbin is the total number of
bins. The modal frequency (MOD) is just Mmode/M ,
where M is the total number of ensemble members.
Likewise, the statistical entropy (ENT) of a forecast
distribution can be defined by

ENT = −
nbin∑
i=1

fi log2 fi, (6)

where fi is the frequency of forecasts in bin i and
ENT is measured in bits. Categorical forecast accu-
racy can be measured either with the ranked proba-
bility score (RPS) or with the Brier Score (BS) if no
partial credit is to be given. In the latter case, a fore-
cast is classified a success if the verification falls into
the same bin as the ensemble mean (or mode) and
a failure if it does not.

To approximate the idealized spread-skill relation-
ship for perfect ensembles of finite size, 10000 fic-
tional ensemble forecasts were simulated numeri-
cally using the simple model. Ensemble size (M)
was varied from 2–50, which was sufficient to elu-
cidate the asymptotic behavior of the spread-skill re-
lationship with increasing ensemble size. The ex-
periments were repeated for differing values of tem-
poral spread variability (β) from 0.1–0.9 in 0.2 in-

crements1. Both continuous (VAR) and categorical
(ENT, MOD) measures of forecast spread were uti-
lized. The association between spread and accuracy
was measured by both the traditional spread-error
correlation and the skill of probabilistic forecast error
predictions using a cross-validation.

Probabilistic forecast accuracy was evaluated us-
ing the continuous ranked probability score (CRPS;
Hersbach 2000) and the ignorance score (IGN; Roul-
ston and Smith 2002). The baseline of compari-
son was the climatological error forecast, which was
based on the full distribution of historical errors with-
out any categorization. Forecast error predictability
was then interpreted as the percentage improvement
in CRPS/IGN over the baseline, which is identical to
the associated skill scores (CRPSS/IGNSS).

2.2 Probabilistic Forecast Error Prediction

The skill of two methods of probabilistic forecast
error prediction were evaluated. A method that does
not require full knowledge of the true forecast PDF,
which we called the conditional error climatology
(CEC) method, uses the historical error distributions
contained within bins organized by a common char-
acteristic. The historical forecast errors were strati-
fied according to their corresponding ensemble fore-
cast uncertainty. In other words, a climatology of
historical forecast errors, conditional on the ensem-
ble forecast variance, was used as a probabilistic
forecast error prediction. Forecast errors were also
stratified by categorical measures of forecast uncer-
tainty. The skill of the ensemble variance-based
CEC method (VAR-CEC), modal-frequency-based
CEC method (MOD-CEC), and statistical-entropy-
based CEC method (ENT-CEC) were compared to
the skill of the direct ensemble PDF (ENS-PDF)
method within the perfect ensemble context of the
simple model. To test the skill of the methods within
a real-world context, similar comparisons were at-
tempted using imperfect SREF data created at the
University of Washington.

2.3 Ensemble Forecast and Verification Data

i The Two UW SREF Systems

An expansion of the original UW MM5 SREF sys-
tem (Grimit and Mass 2002) took place in fall 2001
with the acquisition of additional large-scale anal-
yses (Mass et al. 2003). As a result, two sepa-
rate eight-member SREF systems were developed
with detailed descriptions contained in Eckel (2003).

1Typically observed values of β from real dynamical forecast
ensembles lie in the range 0.3–0.5



Figure 1. The 36- and 12-km MM5 domains for the Uni-
versity of Washington (UW) short-range ensemble forecast
(SREF) systems.

The first system, called ACMEcore, is a multianalysis,
single-model (MM5) ensemble driven by initial con-
ditions (ICs) and lateral boundary conditions (LBCs)
obtained from major operational weather centers
worldwide. The second system, called ACMEcore+,
is a multianalysis, perturbed-model ensemble driven
by the same ICs/LBCs as in ACMEcore, but also
attempts to represent model uncertainty using the
system simulation approach of Houtekamer et al.
(1996). Both SREF systems were run at 36-km and
12-km horizontal resolution in a one-way nested con-
figuration over the region shown in Figure 1. Only
12-km UW SREF output is analyzed here.

ii Post-Processing of UW SREF Data

Forecast biases comprised a significant compo-
nent of the forecast error and impacted the estima-
tion of forecast spread due to the disparate biases
of the individual member forecasts. Because biases
tend to be relatively consistent and predictable, it
was logical to implement a bias-correction procedure
that attempted to remove the majority of the bias be-
fore any other calculations were performed. A very
simple, univariate bias-correction methodology was
implemented (Eckel 2003). Forecast biases were
calculated individually for each UW SREF member,
each geographical location, and each forecast lead
time. A moving-window training period was fixed to
a length of 14 days, although various durations were
tested. The optimal training period is likely state-
and variable-dependent, however, that aspect has
not been considered here.

The skill of the CEC probabilistic forecast er-
ror prediction method was compared to the direct
PDF method both before and after bias-correction
was applied. The direct PDF method requires

that a smooth probability distribution be derived
from the raw (or bias-corrected) forecast ensem-
ble. This smoothing step can be considered a post-
processing activity itself; one that is subject to a wide
variety of methodologies. Ensemble forecasts can
be smoothed by assuming a distribution and fitting
the parameters. Of course, this fitted PDF is likely to
be uncalibrated and underdispersive given the cur-
rent limitations of ensemble forecasts. Alternative
post-processing methods have been formulated that
use historical ensemble member forecast errors to
widen the forecast PDF and achieve calibration (e.g.
Roulston and Smith 2002). A statistically principled
way of combining forecasts from different sources
and their historical errors to arrive at a calibrated
and sharp forecast PDF is through Bayesian Model
Averaging (BMA; Hoeting et al. 1999; Raftery et al.
200x). Probabilistic error forecasts were evaluated
using both standard forecast PDF smoothing and
BMA.

iii Verification Data and Evaluation Period

The NCEP 20-km Rapid Update Cycle (RUC20;
Benjamin et al. 2003) analysis was used as truth
in a grid-based verification approach. Observation-
based verification has initially produced qualitatively
similar results, but has suggested that a weaker
spread-skill relationship existed. Evaluated data
were taken from one cool season (October 2002 –
March 2003). A total of 129 individual cases were
selected during that period, each containing a com-
plete set of SREF forecasts and verification data. For
brevity, only results for grid-based verification of 2-
m temperature forecasts are included in the present
paper.

3. PRELIMINARY RESULTS AND DISCUSSION

3.1 Simple Stochastic Model

An intercomparison of the idealized predictive skill
of four probabilistic forecast error prediction meth-
ods, given a perfect 50-member ensemble with tem-
poral spread variability of 0.5, is presented in Fig-
ure 2. Three different measures of forecast spread
were used to form the CEC predictions; one continu-
ous (VAR) and two categorical (ENT and MOD). The
predictive skill, measured by the continuous ranked
probability skill score (CRPSS), is broken down by
forecast spread. The largest predictive skill for all
methods tends to be realized for cases with ex-
treme (high or low) spread, reinforcing the findings
of Houtekamer (1993), Whitaker and Loughe (1998),
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Figure 2. Idealized probabilistic forecast error predictive
skill as a function of ensemble forecast spread for the di-
rect ensemble PDF method (ENS-PDF) and the ensem-
ble variance-based, modal frequency-based, and statisti-
cal entropy-based conditional error climatology methods
(VAR-CEC, MOD-CEC, and ENT-CEC) measured by the
continuous ranked probability skill score (CRPSS) and cal-
culated from the simple stochastic model outlined in Sec-
tion 2.1 with M = 50 and β = 0.5.

Table 1. CRPSS over the entire 10000-case sample from
the idealized stochastic model for the ENS-PDF, VAR-
CEC, MOD-CEC, and ENT-CEC methods of probabilistic
forecast error prediction.

ENS-PDF VAR-CEC MOD-CEC ENT-CEC
0.060 0.031 0.012 0.017

and Grimit and Mass (2002). Cases where the fore-
cast spread is about average tend to display less
forecast error predictability. In those average spread
cases, the variances of the ensemble PDFs and the
CEC distributions are likely to be more similar to the
climatological error variance.

Given a perfect ensemble, ENS-PDF should be
the most effective forecast error prediction method
because of the perfect case-to-case resolution of the
true forecast uncertainty. That hypothesis is verified
by Figure 2, where ENS-PDF displays the largest
idealized predictive skill for all forecast spread mag-
nitudes. The aggregate CRPSS for the entire 10000-
case sample (Table 1) is 0.06 for ENS-PDF and only
0.03 for VAR-CEC, the best-performing CEC ap-
proach as evaluated with this continuous measure.
ENT-CEC performs slightly better than MOD-CEC,
probably a reflection of the fact that ENT is calcu-
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Figure 3. Idealized probabilistic forecast success predic-
tive skill as a function of ensemble forecast spread for the
ENS-PDF, VAR-CEC, MOD-CEC, and ENT-CEC methods
as in Figure 2, except measured by the Brier skill score
(BSS).

Table 2. BSS over the entire 10000-case sample from the
idealized stochastic model for the ENS-PDF, VAR-CEC,
MOD-CEC, and ENT-CEC methods of probabilistic fore-
cast success prediction.

ENS-PDF VAR-CEC MOD-CEC ENT-CEC
0.164 0.025 0.103 0.095

lated using the entire forecast distribution while MOD
is not. Ignorance skill scores (IGNSS) indicate iden-
tical relative skill (not shown).

The relative perfomance of the CEC error predic-
tion methods is somewhat different for end users
who do not have a continuous utility function. Af-
ter projecting the ensemble forecasts and verifica-
tions into ten climatologically equally likely bins, a
probability of success was computed. In Figure 3
and Table 2, the Brier skill scores (BSSs) calculated
relative to the climatological forecast success rate
are reported. From this categorical vantage point,
ENT-CEC and MOD-CEC outperform VAR-CEC.
The ENS-PDF method remains the leader. There-
fore, categorical (continuous) measures of forecast
spread are more appropriate for end users with a
categorical (continuous) sensitivity to forecast error.
The drawback of using ENT and MOD as predictors
of forecast error is that both measures are sensitive
to ensemble size. At small ensemble sizes, there are
only a small number of discrete values that ENT and
MOD can take on, decreasing their ability to discrim-
inate between events.



3.2 UW SREF Systems

To be presented at the 20thWAF/16thNWP confer-
ence.

3.3 Effects of Post-Processing

To be presented at the 20thWAF/16thNWP confer-
ence.

4. FUTURE WORK

Forecast error predictability using the direct PDF
method after the application of BMA post-processing
to the UW SREF forecasts is forthcoming. Addi-
tional seasons of UW SREF data will be evaluated,
including one warm season (May – September 2003)
and one cool season (October 2003 – March 2004).
The forecast error predictability of the UW SREF and
NCEP SREF systems will be compared over the Oc-
tober 2003 – March 2004 period.
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