
1 Introduction 

Limits on computational resources usually have 
constrained nested regional climate model (RCM) 
studies to a single realization using a single model.  In 
contrast, experience with both short-range limited-
area predictions and medium to longer-term global 
modeling has shown the utility of ensemble methods 
(e.g., Brooks et al. 1995; Buizza et al. 1999; Atger 
1999).  Thus, it is appropriate to explore the utility of 
ensemble simulations within the context of RCM 
applications.  

Appropriate methods for constructing RCM 
ensembles have not been established.  The problem 
is made more complicated because the tendency for 
solutions to diverge in seasonal limited-area forecast 
models or nested regional climate models differs both 
from short-term limited-area models and from global 
seasonal models. Short-term applications of limited-
area models are strongly dependent on initial condi-
tions, but "memory" for initial conditions tends to 
decay for seasonal and longer simulations using 
limited-area models because of the continual input of 
data at the lateral boundaries (Giorgi and Bi 2001). 
Likewise, while global model solutions are free to 
diverge based on small differences in initial conditions 
or model physics, the divergence of solutions in 
limited-area models may be constrained by specified 
lateral boundary conditions. Thus, experience with 
short-range limited-area models and global models 
does not necessarily provide useful guidance for 
producing ensembles of seasonal forecasts using 
limited-area models. 

In the present study we make an initial attempt 
to address ensemble prediction using nested regional 
climate models by comparing methods for generating 

ensemble simulations of seasonal precipitation. We 
use the summer 1993 flood (1 June - 31 July) over 
the north-central U.S. as a test case. This period 
corresponds to the PIRCS 1-B experiment, so that the 
PIRCS 1-B simulation suite provides a multi-model 
ensemble for comparison to other ensemble methods.  

2 Methodology 

Four methods are examined for creating the 
limited-area forecast: 

• Lagged-average ensemble:  The lagged-average 
ensemble technique appears to have first been 
discussed by Hoffman and Kalnay (1983) and 
has been used in various applications since its 
development (e.g., Molteni et al. 1986; Brankovic 
et al. 1990).  In this technique each ensemble 
member is started at a different initial time with all 
simulations overlapping for the period of interest. 
The predicted fields at the start of the period of 
interest are viewed as differing but physically 
plausible initial conditions on this date.  Results 
for this overlapping period are used as members 
of the ensemble with each model's preceding 
"spinup" portion discarded. Our lagged-average 
ensemble consists of eight instances of the MM5 
mesoscale model executed with the same model 
configuration but with different starting dates.  
Simulations were begun at 00 UTC 15 May 2003 
and at preceding times separated by 12-hour 
intervals. 

• Perturbed physics ensemble: This method uses 
MM5 with a single set of physics options, but 
internal parameters within the convective param-
eterization are assigned different values in order 
to create different realizations for the ensemble.  
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All simulations use the same initial conditions. 
Here, our approach follows Yang and Arritt 
(2002) in which two parameters are varied within 
the Grell (1993) convective parameterization. 

• Mixed physics ensemble:   This method uses the 
same numerical model and initial conditions but  
differing schemes for physical parameterizations.  
We performed simulations with MM5 using a 
variety of moist physics options but the same 
initial conditions. The moist physics options 
included choices of either the Grell (1993) or 
Kain-Fritsch (Kain and Fritsch 1990) convective 
parameterizations, and choices of different 
explicit moisture schemes.  

• Multi-model ensemble:  In this approach distinct 
model simulations are used as individual 
realizations of an ensemble. Here we used 
models participating in the PIRCS 1-B 
experiment (Anderson et al. 2003).  

3 Results 

3.1 Area average precipitation 

Precipitation averaged over a portion of the 
upper Mississippi River basin is shown in Figure 1 for 
each ensemble member.  We show results for 
individual members in order to illustrate the spread 
created by each ensemble method.  It is immediately 
apparent that the lagged-average ensemble had very 

little spread.  We interpret this result to reflect the 
strong control of lateral boundary conditions on the 
regional model solution, so that there was little 
sensitivity to initial conditions. The multi-model and 
mixed-physics ensembles had the largest spread. 
Notably, the spread obtained by using different moist 
physics parameterizations was about as large as the 
spread obtained by using completely different models.  

3.2 Equitable threat score 

The usual definition of the equitable threat score 
(ETS) was employed, i.e.,   

 ETS = (H - C) / (F + O - H - C) 

where H is the number of hits (correctly forecasted 
occurrences), F is the number of forecasts of the 
event in question that were forecast to occur (whether 
correct or incorrect), O is the number of occurrences 
of the event in question, and C is the number of 
correct forecasts that would be expected by chance.  
Here the event is taken as accumulated precipitation 
over the period 1 June - 31 July exceeding a specified 
threshold, and the number of occurrences is the num-
ber of gridpoints at which the threshold was exceed-
ed. We considered thresholds from 200 to 600 mm at 
intervals of 25 mm.  In evaluating each ensemble we 
took the simple arithmetic mean of all members to 
create an ensemble forecast, and evaluated categor-
ical exceedence for this ensemble mean. 

0

5

10

15

20

25

30

35

40

45

1-Jun 1-Jul 31-Jul

P
re

ci
pi

ta
tio

n 
(c

m
)

Ensemble Mean
run1
run2
run3
run4
run5
run6
run7
run8

0

5

10

15

20

25

30

35

40

45

1-Jun 11-Jun 21-Jun 1-Jul 11-Jul 21-Jul 31-Jul

P
re

ci
pi

ta
tio

n 
(c

m
)

C lim RAMS CRCM
DARLAM HIRHAM
MM5-ANL MM5-BATS
PROMES RegCM2
RSM-NC EP RSM-Scripps
SweCLIM-ECMW F SweCLIM-NCEP
Model Average OBS-VEMAP
OBS-Higgins

0

5
10
15
20
25
30
35
40
45

1-Jun 1-Jul 31-Jul

P
re

ci
pi

ta
tio

n 
(c

m
)

Ensemble Mean
run1
run2
run3
run4
run5
run6

0

5

10

15

20

25

30

35

40

45

1-Jun 1-Jul 31-Jul

P
re

ci
pi

ta
tio

n 
(c

m
)

Ensemble Mean
run1
run2
run3
run4
run5
run6
run7
run8

Figure 1:  Cumulative simulated precipitation averaged over a region of the upper Mississippi River basin (37-
47 oN, 99-89 oW).   
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The method producing the highest ETS depend-
ed on the threshold (Figure 2).  For thresholds below 
250 mm the lagged ensemble method had the highest 
ETS, while for thresholds above 250 mm the mixed 
physics approach tended to produce the highest ETS.  
The multi-model ensemble tended to have low ETS.  
Inspection of the spatial pattern of precipitation (not 
shown) suggests that the low ETS for the multi-model 
ensemble can be attributed to the widely differing 
spatial patterns of the individual models, so that 
precipitation maxima were strongly smoothed in the 
ensemble mean.  All of the methods yielded ETS of 
essentially zero for thresholds above 500 mm, 
reflecting the fact that there were very few hits at the 
highest thresholds. 

3.3 Bias 

Using the same terminology as for ETS, the bias 
(B) is defined as  

B = F / O 
B ranges from 0 to infinity. While a perfect forecast 
system has B = 1, it does not follow that B = 1 implies 
that forecasts are accurate; e.g., in the context of ETS 
we could have F = O so that B = 1 and yet have no 
“hits” and zero ETS. 

All of the methods produced low bias (i.e., B < 1) 
for all categories (Figure 3). The highest bias was 
produced by the lagged average ensemble.  This is 
consistent with the small spread of the lagged 
average method; that is, since all the members were 
similar, averaging them together did not produce as 
great smoothing as for methods with larger spread. 
Therefore the lagged average method produced the 
greatest number of forecasts of category exceedence 
even though these forecasts were not necessarily 
accurate. 

4 Conclusions 

• The lagged ensemble method yielded very low 
spread.  The implication of this result is that 
nested regional climate simulations have little 
sensitivity to initial conditions, at least for the 
case considered here, and are primarily 
boundary-value problems.  The continual input of 
specified lateral boundary data causes the 

simulations to "forget" details of the initial 
conditions.  This is in marked contrast both to 
global models, where the solutions are free to 
diverge, and to short-range limited-area 
forecasts, where the forecast time is short 
enough that the initial conditions are critical. 

• Spread obtained by using different moist physics 
schemes within MM5 was about as great as the 
spread obtained by using completely different 
models.  

• The method that produced the highest equitable 
threat score (ETS) depended on the specified 
threshold for accumulated precipitation.  For the 
lower values the lagged ensemble produced the 
highest ETS although the mixed-physics 
ensemble was nearly as high.  For higher 
precipitation values the mixed-physics ensemble 

The similarity in spread between the mixed-
physics and multi-model ensembles raises the 
possibility that a mixed-physics ensemble approach 
could be considered as a proxy for a multi-model 
ensemble.  From a practical standpoint it is much 
more straightforward to produce a mixed-physics 
ensemble using a single model than to run multiple 
models each having its own data format, optimal 
computational platform and so forth.  The mixed-
physics ensemble also performed well in terms of 
equitable threat score, especially for higher 
precipitation amounts.   

These results need to be evaluated further using 
more detailed statistical approaches (e.g., relative 
operating characteristic and decomposition of mean 
square error).  We also need to develop better 
methods for creating ensembles than simply taking 
the mean of all realizations. Finally, it is essential to 
keep in mind that the results shown here are for only 
a single 60-day period, and a highly anomalous 
period at that.  Despite this being a summertime case, 
the synoptic environment was quite active so that we 
might expect lateral boundary forcing to exert stronger 
control on the RCM solutions than in some other 
circumstances.  Our findings need to be extended by 
considering multi-year simulations that capture 
different seasonal regimes and different interannual 

Figure 2:  Equitable threat score (ETS) for each 
ensemble method at various precipitation 
thresholds. 
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Figure 3:   Bias for each ensemble method at 
various precipitation thresholds. 



climate states (e.g., positive and negative phase of 
ENSO).  Such simulations are presently underway as 
an extension of the PIRCS 1-C project. 
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