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1. INTRODUCTION

A goal of the National Center for Atmospheric Re-
search (NCAR) Research Application Program (RAP)
icing project is to improve the forecasts of icing con-
ditions that threaten aircraft. The Current Icing Poten-
tial (CIP) is an expert system model that uses observa-
tions and numerical weather prediction (NWP) output
to infer information about cloud physics and behavior.
Currently, the presence and intensity of icing can only
be verified using aircraft observations. Historically, this
has been done using pilot reports (PIREPs). A less sub-
jective source of icing conditions is data collected by a
specially equipped research aircraft. Instrumentation on
the aircraft collects information on the occurrence of ic-
ing, temperature and liquid water content. This article
discusses an effort to statistically post-process CIP diag-
noses to improve model performance. Statistical mod-
els were created using both PIREPs and data from the
research aircraft. Models were compared using relative
operating characteristic (ROCs) curves and by calculat-
ing the areas beneath these curves. Information about
variable importance and model weights are discussed.

This article is structured as follows. First, sources
of data are explained. A description of the CIP output,
PIREPs and data collected by the icing research aircraft
are presented in Section 2. The suite of statistical models
were used to post-process the CIP data are described in
Section 3. These models include logistic regression, neu-
ral networks and random forests. Predictions made by
these models as well as the direct output from the CIP are
combined using an algorithm called stacked generaliza-
tion. As detailed in Section 4, this technique calculates
weights for each model by means of a cross validation
algorithm.

Section 5 presents results that compare the perfor-
mance of the CIP diagnoses with that of the combina-
tion of statistical models and the CIP diagnoses. PIREP
and CIP data used for these evaluations were collected
during the winter of 2003. These two methods are com-
pared using the ROCs and the empirically calculated ar-
eas beneath these curves. Information about the weight
given to each model and some information about vari-
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able selection is also gathered. An alternative model was
constructed using data collected by the research aircraft
during the winter of 2002. A statistical model made with
this data is compared with the icing potential produced
by the CIP. Included in these results is a presentation of
variables collected by the experimental icing plane and
data available from the CIP algorithm. Conclusions and
discussions follow in Section 6.

2. DATA

Three sources of data are used in this report. They
are PIREP data that are reported by selected aircraft, CIP
diagnoses and the accompanying NWP information and
icing data from the 2002 flights of the NASA Glenn Re-
search Center Twin Otter research aircraft. These data
sources are discussed in the following sections.

2.1 Current Icing Potential (CIP)

The CIP is a physically based expert system used to
create an hourly, three-dimensional diagnosis of icing
and super cooled large drop (SLD) potential. It com-
bines surface, satellite, radar observations, PIREPs, and
numerical weather model data using decision tree and
fuzzy logic methods to assign a potential for icing and/or
SLD conditions on a 0 to 1 scale. The CIP uses the Rapid
Update Cycle 2 (RUC-II) for its environmental informa-
tion. A complete description of the CIP algorithm can be
found in Bernstein et al. (2004). Because the icing and
SLD potentials are typically verified using PIREPs, it is
very difficult to calibrate them, so they cannot be thought
of as a probability for icing or SLD conditions to exist at
a certain location.

2.2 Pilot Reports

Because PIREPs are the most widely available obser-
vations of icing conditions, they are commonly used to
verify icing forecasts. However, PIREPs have known
deficiencies as verification data (Kane et al., 1998). In
particular, they are not systematic and they are biased in
both time and space. Most PIREPs are made during day-
light hours when most aircraft are flying. Additionally,
certain days of the week that have greater air traffic also
tend to have greater numbers of PIREPs. Finally, more



PIREPs are made during the winter season that the other,
warmer seasons.

The number of PIREPs received in an area is a func-
tion of both the presence of icing and the air traf-
fic. Those regions with the greatest icing frequency
in conjunction with heavy air traffic naturally have the
most PIREPs. These regions include the Great Lakes,
Ohio-Mississippi Valley, Pacific Northwest and Great
Plains. Many locations in the western US have few or
no PIREPs. Desolate parts of Utah and Nevada are good
examples.

In this report, the PIREPS have been coded to indicate
the presence or absence of icing. This is due to the lack
of consistency in the PIREP severity field. PIREP sever-
ities greater than trace are considered positive. Positive
PIREPS are only considered if they are from twin engine
commuter aircraft that carry about 20 to 70 passengers.
Such aircraft tend to fly in icing conditions relatively fre-
quently and have good visual indicators of icing.

2.3 NASA Twin Otter

Engineers and scientists at the NASA-Glenn Research
Center have been studying the formation of icing and
its properties in an effort to improve aircraft safety (see
Miller et al. (1998)). As part of this research, an instru-
mented aircraft is flown into known icing conditions to
take measurements of the environments associated with
icing and their effects on aircraft performance. The air-
craft is a DHC-6 Twin Otter, which is a twin engine, pro-
peller driven plane that has been modified for use as a
research platform. It has instruments to detect icing and
measure cloud properties such as temperature and liquid
water content.

Data from these instruments were used in this study
to help verify and improve the CIP diagnosis. The data
were averaged over five-minute periods to be applied to a
grid point in the algorithm. To ensure that the data were
consistent, they were only used if the plane’s altitude
changed by less than 1000 ft and if its speed remained
above 90 kt. Also, the five-minute average temperature
had to stay below 0o C so that icing was possible. The
main instrument used for this study was the Rosemount
icing detector. This instrument is a metal shaft that pro-
trudes from the aircraft and oscillates at a certain fre-
quency. When ice accretes on the instrument, the fre-
quency drops until it reaches a threshold. Then voltage
must be applied to shed the ice and return it to the base
frequency. For the purposes of this study, if the cycling
process occurs more than once in five minutes then icing
will be inferred for that time period and location.

3. STATISTICAL MODELS

Three statistical models are used to model the pres-
ence and absence of icing: logistic regression, neural
networks and random forests. These approaches were
selected because of their past use in modeling icing and
similar phenomena and are described below.

3.1 Logistic Regression (or GLM)

Logistic regression is a specific member of the gen-
eralized linear model (GLM) family and is suitable for
binary responses (Chambers and Hastie, 1992). Gen-
eral linear models are described by their link function
and their variance function. The link function describes
the relation between the mean and the linear predic-
tors. In the case of linear regression the link function
is log

� µ�
1 � µ ��� where µ is the mean. A principle benefit of

GLM models is that the predictand is not transformed to
address assumptions about the error. Additionally, µ is
constrained to the interval [0, 1].

3.2 Neural Network

Feed-forward neural networks are a way to generalize
linear regressions. Neural networks consist of a hidden
layer of nodes that provide an intermediate level for the
input information. Predictions are made from this input
layer using an “activation threshold” function (Venables
and Ripley, 1994). In this project, there are twelve input
nodes, three hidden nodes and two output nodes. The
number of hidden nodes was selected based on past ex-
perience.

3.3 Random Forest

The random forest is an extension of the bagging algo-
rithm proposed by Breiman (2001). Bagging is a classi-
fication and regression tree algorithm that independently
grows trees on a bootstrapped sample of the original data.
In bagging, at each node a split is made using the best of
all variables. In random forests, a split is made on a ran-
domly selected subset of all regressors. This makes the
process significantly faster and allows more trees to be
grown than in bagging. In the end, a prediction is made
based on a vote amongst all the trees.

In random forests, several measures of variable im-
portance are available. This paper considers the fol-
lowing method. After a tree is constructed, the hold-
out data are used to estimate the effect of each variable.
For each variable, the values are randomly permuted and
the increase in the mean squared error of each predic-
tion is recorded. These data are aggregated amongst all
trees, providing some information about what variables
are most influential. It is important to note that if two



variables are highly dependent, their importance may be
underrepresented. Random forests are explained in Liaw
and Wiener (2002). For this paper, 100 trees were con-
structed at each iteration and at each node four variables
were randomly selected.

4. COMBINATION OF STATISTICAL MODELS

In order to determine the optimal weights to assign
to each statistical and CIP diagnosis a stacking proce-
dure was followed, as described by Smyth and Wolpert
(1999). The procedure consists of the following steps.
The data are randomly partitioned into groups. In this
study, five groups were used. In turn, each group is with-
held and a model is constructed with the remaining data.
This model is used on the hold-out data. Weights that
minimize the sum of the squared errors for all models are
estimated using a non-linear optimization routine. The
error is the difference between the forecast and the obser-
vation of the model. The weight assigned to each model
is constrained to be kept non-negative. In this study, the
weights were not constrained to add up to one. This al-
lows the combination algorithm to make adjustments for
biases. To provide information about the usefulness of
each statistical model, the values of these weights are
noted for each time step.

5. RESULTS

5.1 Models based on PIREPs

For nine weeks from December 2002 until March
2003 statistical models were constructed using two
weeks of CIP output and NWP data to predict the pres-
ence or absence of icing as reported on PIREPs. The
CIP and statistical models are verified with data from the
subsequent week. The results of these models were com-
pared with PIREPs collected during the following week.
This process was repeated for each week in the nine week
period.

Based on the larger areas beneath each ROC curve, the
combination of statistical models provides a slight im-
provement in skill over the directed CIP diagnoses (Ta-
ble 1). On a weekly basis, this improvement ranges from
0.3 to 4.8 percent. Compositing the results the entire trial
period, a 3.1 percent improvement is noted (Table 1 and
Figure 2).

The random forest consistently received the greatest
proportion of weight (see Table 2). These weights are
consistently greater than that placed on any of the re-
maining models. Neural networks did not contribute sig-
nificantly to any weekly prediction.

Variable importance information was gathered for
each random forest model during the creation step. Since

Table 1: Empirically calculated areas under ROC curves
by week.

Week CIP Stats Mod Diff. % Diff.
1 0.77 0.81 0.03 4.1
2 0.82 0.84 0.02 2.5
3 0.80 0.80 0.00 0.3
4 0.75 0.78 0.03 3.4
5 0.81 0.83 0.03 3.2
6 0.79 0.81 0.01 1.5
7 0.80 0.83 0.03 4.2
8 0.77 0.81 0.04 4.8
9 0.84 0.88 0.04 4.1

Avg. 0.80 0.82 0.03 3.1

Table 2: Weights placed on statistical and CIP output -
by week

Week CIP glm tree nnet
1 0.09 0.24 0.56 0.07
2 0.07 0.15 0.75 0.03
3 0.10 0.00 0.89 0.01
4 0.16 0.04 0.81 0.01
5 0.00 0.10 0.88 0.02
6 0.14 0.10 0.69 0.04
7 0.00 0.13 0.85 0.02
8 0.08 0.00 0.94 0.01
9 0.00 0.11 0.92 0.00

Average 0.07 0.10 0.81 0.02
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Figure 1: Examples of ROC curves generated for the week forecast starting on the date listed. The statistical models
were generated using the previous two week’s data. Values in text box are the empirically calculated areas under the
curves.
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Figure 2: ROC plot with verification results from all ver-
ification periods grouped together. 14,869 records.

the random forest algorithm begins by bootstrapping the
data, a portion of the data is not used. Using this holdout
data, in turn, the value for each variable is randomly per-
muted and the increase in the mean squared error on the
holdout data is noted. The more important the variable
in the model prediction, the greater the increase in error
when it is randomized. In Table 3, one notes that the
CIP diagnosis is frequently the most important variable.
Temperature and relative humidity are the most impor-
tant NWP variables. During weeks 2 through 4 tempera-
ture is the most important variable.

5.2 NASA Twin Otter Data

The routes of the NASA Twin Otter in the winter of
2002 originated in Cleveland with the the intent of mea-
suring cloudy areas with high potential for icing (Figure
3). Figure 4 illustrates the relation between variables.
This figure is presented as a tool used for exploratory
data analysis and intended to show the relationship be-
tween variables. The histograms of the respective vari-
ables are found along the diagonal. The first variable,
labeled “Cycles”, is the number of heating cycles of the
icing probe per five minutes. The greater the number
of cycles, the higher the accumulation rate of ice on the
aircraft. The flights are coded by color. The triangles
and circles indicate the presence of icing and no icing
using the criteria described in Section 2.3. Of particu-
lar interest here is the strong relationship between the
number of icing cycles and the average liquid water con-
tent (ALWC). This is as expected since by definition the
greater the liquid water content, the more the icing. Since
ALWC is measured on the plane, hopefully, we would
find a variable or set of variables produced or used by
the CIP, NWP or observation that would show a similarly
strong relationship with the icing accumulation rate. Un-
fortunately, such a variable is not immediately obvious.

20020212
20020215
20020221
20020226
20020307
20020312

Figure 3: Routes of NASA Twin Otter plane flown from
Cleveland in Winter 2002.
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Table 3: Increase in mean squared error when variable values were randomly permuted, for hold-out Random Forest
data. Variable definitions are found in the Appendix.

Week CIP temp rh ctopt anyp ccnt slw vv sld
1 8.6 5.5 5.5 1.8 0.5 0.4 0.5 1.1 4.0
2 8.2 11.6 6.7 1.5 1.2 0.8 1.0 1.1 5.3
3 8.1 12.9 9.0 2.2 2.1 1.3 1.2 1.9 5.6
4 9.3 10.7 10.1 5.3 2.6 1.0 1.0 3.1 4.6
5 7.6 6.4 7.2 4.9 2.2 0.9 0.7 2.9 2.5
6 7.0 3.4 5.6 2.9 2.9 0.8 0.2 2.1 2.1
7 5.9 3.8 3.8 2.6 1.0 0.3 0.5 2.2 2.4
8 7.1 6.6 5.8 4.4 1.2 0.6 0.8 3.0 2.4
9 9.9 6.4 7.3 4.8 1.1 0.9 1.0 3.0 4.1

10 8.8 5.7 6.1 2.5 0.7 0.6 0.7 2.3 4.0

5.3 Models based on and compared with NASA
Twin Otter data

To avoid the deficiencies of the PIREP information,
a statistical model was built using the research air-
craft measurements as the predictand. A comparable
model was not made using PIREPs because relatively
few PIREPs were available for this area at these times.
To verify this statistical model and compare the model
with CIP output a cross validation procedure was used.
Each flight was treated as holdout data and a statistical
model was formulated with the data from the other five
flights. Since these flights occurred over a month time
period, there is not the same chronological order present
in the PIREP based models. Essentially, the ROC curves
from the statistical model and the CIP are quite simi-
lar (Figure 5). The ROC area for the statistical model
is slightly greater than that for the CIP forecast. ROC
values are not calculated for individual flights because
with so few records the empirically calculated areas are
suspect.

6. DISCUSSION AND CONCLUSIONS

The use of a statistical model to post process data
produced a slight improvement over the direct CIP out-
put. This improvement may be practically significant.
As the CIP is not a calibrated diagnosis, the statistical
post-processing may be useful as a way to calibrate such
a product. The challenge here is in finding and appro-
priate verification procedure. An important next step is
to quantify the volume of space with positive icing indi-
cated for each event. This procedure will produce ROC–
like figures with %Volume plotted on the x-axis. From
these plots, one can determine whether the performance
presented here is achieved by forecasting an excessively
large area. Plots of the output need to be examined for
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Figure 5: ROC curve for models created using NASA
Twin Otter data instead of PIREPs. There were 154 in-
dependent records.



physical consistency and should be compared with CIP
itself.

Exploration of the Twin Otter data verified the well-
known relationship between liquid water content and ic-
ing. Unfortunately, the environmental variables provided
by the NWP or observations alone do not provide a re-
liable prediction of this field due to microphysics limi-
tations. This is evident by the poor correlation between
the ALWC and the NWP super-cooled liquid water field.
The poor relation between these field may in part be due
to spatial variability of the clouds that is not detected by
the NWP. Improvements in forecasting of this field may
be offered by the MM5 and newer versions of the RUC.

To help overcome the deficiencies in PIREP data,
more research aircraft data are becoming available. This
includes NASA data from the winter of 2003. Addition-
ally, several planes are scheduled to gather data in the
winter of 2004 during AIRS II Alliance Icing Research
Study.

APPENDIX

List of predictors used in the prediction of the pres-
ence of icing. Superscripts indicate the following: 1 –
variables measured by the aircraft, 2 – CIP data, 3 –
NWP model (RUC II) data.

Name Description
Cycles1 Rosemount heating cycles per 5

minutes
AWLC1 5 minute average cloud liquid water

content (g m � 3)
TEMP1 Static air temperature (oK)
CIP2 Icing potential
rh3 Relative humidity (%)
temp3 Temperature (oK)
ctop3 cloud top temperature (oK)
anyp3 any precipitation

�
0, 1 � .

vv3 vertical velocity (µ bar sec � 1

slw3 combination of cloud and rain mix-
ing ratio (g kg � 3 * 1000)

ccnt3 cloud count
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