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1.  INTRODUCTION 

 
In this project we plan to use the quasi-geostrophic 
3D-Var data assimilation simulation system developed 
by Morss (1999) and Morss et al (2001) to compare 
several methods for data assimilation and ensemble 
forecasting. It is based on the a QG model of Rotunno 
and Bao (1996), and the 3D-Var system is similar to the 
NCEP operational Spectral Statistical Interpolation (SSI) 
method of Parrish and Derber (1992). Hamill et al (2000) 
have also used this system for testing comparing several 
ensemble forecasting methods, and Hamill and Snyder 
(2002) for a hybrid Ensemble Kalman Filter.  
 
Since we want to compare 3D-Var with 4D-Var and with 
the recently developed Local Ensemble Kalman Filtering 
(LEKF) of Ott et al (2003), it was necessary to develop 
the adjoint of this model. As a preliminary step, we 
compare the analysis and forecast “errors of the day” 
obtained the 3D-Var with bred vectors and with singular 
vectors. Because of difficulties associated with the 
adjoint model, only preliminary results are presented in 
this paper. Further comparisons with Lyapunov vectors, 
and singular vectors with different norms will be 
presented at the conference. This comparison should 
provide guidance on the optimal generation of initial 
perturbations for ensemble forecasting and the relative 
advantages of 4D-Var and Ensemble Kalman Filtering. 
 
2.   EXPERIMENTAL SET-UP 
 
The quasi-geostrophic model of Rotunno and Bao (1996) 
is a mid-latitude, beta plane, finite difference, channel 
model that is periodic in x and has impermeable walls at 
the north and south boundaries, and rigid lids at the top 
and bottom. Pseudo-potential vorticity is conserved 

except for Ekman pumping at the surface,  
horizontal diffusion and forcing by relaxation to a zonal 
mean state. The model is written in nondimensional form 
and has 64 grid points in the zonal direction, 32 grid 
points in meridional direction and 7 levels in vertical 
direction. The model variables are potential vorticity q 
defined at the interior levels (from levels 1 to 5) and 
potential temperature T defined on the bottom and top 
levels (levels 0 and 6). 
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As in Morss (1999) and Hamill et al. (2000) and others, 
we use a single model integration as the true or “nature” 
run. “Rawinsonde observations” are generated every 12 
hours by randomly perturbed the true state at fixed 
observation locations, which were randomly chosen at 

initialization. The simulated data assimilation is 
performed with a 3D-Var data assimilation scheme, 
constructed by Morss (1999). In our experiments, the 
same model is used to generate the truth and forecasts, 
assuming a perfect model scenario. 
 
(A) BRED VECTORS 
 
The bred vectors (BV) are obtained through a breeding 
cycle (Toth and Kalnay, 1993, 1997), which starts by (1) 
adding random perturbation to the analysis; (2) 
integrating for 12 hours the initial conditions from both 
the breeding run and the analysis; (3) normalizing the 
differences between these two nonlinear runs; (4) adding 
the difference to the new analysis, and repeating steps 
(2) to (4). The bred vectors are defined as the 
normalized differences between breeding and 12 hour 
forecast runs. 
 
(B) SINGULAR VECTORS 
 

Singular vectors are the orthogonal sets describing the 
maximally growing perturbations. They are obtained by 
assuming the perturbation ( xδ ) behaves linearly within 
the chosen “optimization” time interval t so that the 
linearization of the original QG model (tangent linear 
model, L) can represent its evolution this interval, 
expressed as 0xx δδ Lt = . The growth rate for a given 
norm at some optimization time can be defined as the 
perturbation norm after applying the tangent linear 
operator for this optimization time compared with to the 
initial perturbation norm defined with this norm, 
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, which can also be rewritten 

as , where L>δ 0, x T is the 
adjoint of the tangent linear model. The leading initial 
singular vector is defined as the perturbation that 
maximizes the growth at the end of the optimization 
interval and can be obtained by finding the eigenvector 
of the matrix LTL with the largest singular value, as 
originally done by Lorenz (1965). But, in practice, the 
number of variables in numerical weather models is very 
large and because of its large dimension, it is difficult to 
write in matrix form. The tangent linear model and its 
adjoint codes, referred to as TLM and ADM have been 
developed for the QG model of Rotunno and Bao (1996) 
for this project. A first version of these codes for the TLM 
and ADM were originally generated by the widely used 
tangent linear adjoint model compiler (TMAC, Giering, 
1996). This compiler provides automatic differentiation in 
forward (TLM) and reverse mode (ADM) for programs 



written in Fortran. In our present experiments, SVs are 
defined with the potential enstrophy norm and with 
different optimization times: 12hours, 24hours and 
48hours. We used both the power method and, as a 
verification, the Lanczos algorithm to calculate the 
leading SV. 
 
It is necessary to test the correctness of both the TLM 
and ADM codes. For the TLM, we use the gradient check 
ratio is used as in Navon et all (1992), defined as 
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represents the nonlinear model, α is the size of the 
perturbation and the ratio, d, represents the degree of 
linearity. With TAMC, we are able to try the expensive 
but accurate approach of letting the background flow 
evolve within the different steps of the TLM. Using single 
precision, the ratios are good (close to 1) within one-day 
time integrations but start to degrade for the potential 
temperatures at the bottom and top levels. When testing 
with different size of the perturbations (Fig. 1), the ratios 
remain close to 1 only ifα is within the range 0.001 to 2, 
suggesting that round-off errors dominate, especially for 
potential temperatures, for amplitudes less than 0.001. If 
we assume (as usually done in operations) that the 
background is constant within one time step, the 
gradient check becomes worse. The ratios with different 
perturbation sizes are listed in table 1. Given these 
results, we modified TLM and adjoint models using 
double precision in order to avoid the dominance of 
round-off errors. Fig. 2 shows that the gradient check is 
greatly improved and can be extended to 1.e-10 when 
including the background flow evolution within each time 
step. The ratios for the TLM with constant background 
stay close to a value of 1.00 for integrations as long as 3 
days.  
 
For testing the correctness of the adjoint code, it is 
customary to take advantage of the identity 
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adjoint variable. Even with single precision, when the 
tangent model accuracy is poor, the adjoint verification 
remains extremely good as shown in Fig 3, which can 
only suggest that the adjoint model is correctly coded.  
 
3.  COMPARISONS BETWEEN BVS AND SVS 
 
Corazza et al (2002) showed that bred vectors (BVs) 
have the ability to depict the structures of the 
background error in a data assimilation system like 
3D-Var, which does not include errors of the day in the 
background error covariance. The fact that BVs carry 
information on the shape of the errors of the day, is 
apparent in Fig. 4 adapted from Corazza et al. (2002). It 
shows that the subspace spanned by a set of 10 bred 
vectors explains 96-98% of the variance of the 
background error. Fig 5 (a)-(d) are examples showing 

the resemblance between one randomly chosen BV and 
the background error from day Jan31 to Feb02, even 
when the background error grows into smaller scales like 
the area in the northeastern portion in Fig.5(d) 
 
The same background flow is used to calculate the initial 
and final SVs corresponding to the periods in Fig. 5, and 
is shown in Fig 6(a)-(f). Unlike the BVs, the initial 
singular vectors with different optimization times at day 
31 show a more zonal pattern but evolve into final 
singular vectors, which also share a similarity with 
background errors and bred vectors. In this QG mode, it 
seems that the singular vectors with the optimization 
time of 12 hour provide the best description of the 
background error. This is because large growth rates of 
the temperature perturbations at top and bottom are 
created when applying the adjoint model. This pattern 
persists in the initial perturbations when they are 
normalized with the analysis error. This problem will be 
discussed in more detail in the next section.  
 
In order to compare the extent to which the background 
error locally projects on either the BVs or on the initial 
and final SVs, we compute the cosine of the angle 
between two chosen fields. We use local regions of 5 by 
5 grid points centered at each grid point and compute 
the cosine between the vectors of 25 values for the two 
fields. For comparison, we also use a flat field to project 
to the background error. As shown in Fig. 7, the results 
from projecting Initial SVs to the background error are 
similar to those using the flat fields. They project more to 
the flat part of the background error at initial time and 
miss the portion with fast growth, like the northeast part 
in Fig 7(c), thought the final SV do project much better 
onto some of the structures of the background error. On 
the other hand, the BVs project more onto fast growing 
background errors, and maintain a shape closer to the 
background error throughout the integration.    
 
4. PRACTICAL PROBLEMS WITH THE ADJOINT 
MODEL 
 
In this section we discuss two of several problems we 
have found in developing the adjoint of this model 
starting with the TAMC compiler, which is otherwise very 
helpful, also associated with the way the original 
nonlinear QG model is coded. 
 
(A) ADJOINT OF THE POISSON SOLVER 
 
In this QG model, the Poisson equation relating the 
potential vorticity and potential temperature to the 
streamfunction are solved in spectral coordinates. 
Because of the boundary conditions, the spectral 
transform is written as a complex exponential in x 
direction, and in the y direction it is written in terms of 
cosine y for the zonal mean component, and sine y for 
the remainder of the solution. The adjoint code for the 
solver of the Poisson equation was originally created by 
Morss (1998).  
 
Mathematically, the Poisson solver multiplies each 



spectral component of the field by the inverse of the 
wave number squared and thus the amplification 
becomes proportional to this factor, causing long waves 
to be naturally amplified. The model solves the 
continuous Poisson equation  
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The boundary conditions at bottom and top levels are 
cast in terms of potential temperature, the vertical 
derivative of the streamfunction. 
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After converting into spectral coordinates, the Poisson 
equation can be written as a simple tri-diagonal matrix 
equation, where p is the zonal wave number, q is the 
meridional wave number and k is the vertical level, which 
can solved with a fast LU decomposition. 
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The diagonal elements include the coefficients of both 
horizontal wave numbers and vertical stratification while 
the off diagonal elements contains the vertical terms only. 
For low wave numbers, this matrix is less diagonal 

dominant (need kkk cab +> ) and has large 

values of Qpqk.  
For simplicity, we write the streamfunction as 

 in the forward model and assume it is 
self-adjoint. In the adjoint model, the adjoint of the 
Poisson solver will be expressed as q  and 
therefore the adjoint of the potential vorticity will be 
dominated by low wave numbers. Since potential 
temperature is a first order vertical derivative of the 
streamfunction, the temperature perturbation becomes 
larger than potential vorticity after the application of the 
adjoint of the Poisson solver. Therefore, the long wave 
patterns in the temperature take over the growth of the 
total perturbation after several time steps and show a 
strongly zonal pattern in all adjoint fields. Fig. 8 is an 
example of the applying the Poisson solver for potential 
vorticity and temperature and taking the resulting 
streamfunction as the input for the adjoint of the Poisson 
solver. In this example, because of the presence of 
(small amplitude) long wave components in the initial 
potential vorticity and temperature, the long waves in the 

adjoint of vorticity and temperature fields become 10 
times larger than the initial fields. Thus, this long wave 
pattern has large growth rate in this QG model and 
dominates after a short time. Note also that in Fig. 8, 
extremely large values appear close to the walls after the 
adjoint of the Poisson solver is applied. This problem is 
created when applying a slow cosine Fourier transform 
for the zonal mean component, because the problem is 
numerically ill-posed, creating a kink on the 
streamfunction for zonal wave number zero (Fig.9). We 
were able to correct for this problem by making the input 
array into a real odd function and solving with the Fast 
Fourier cosine transform developed for the ECMWF 
model (Fig. 9). 
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(B) PROBLEMS WITH THE BOUNDARY 

CONDITIONS IN THE ZONAL DIRECTION 
 
The codes for TLM and adjoint models were 
automatically generated by TAMC based on the original 
nonlinear model. This is done by linearizing each line in 
the code and casting it into the equivalent of a matrix and 
its transpose form without the knowledge of the physical 
meaning of each term. In the original QG model, an extra 
grid point is used to impose the periodic boundary 
conditions, and the boundary points are considered 
separately at the beginning and last step in a horizontal 
direction loop. Code for a simple nonlinear advection 
equation is shown as an example of the problem that 
arises from this approach. Here j is index for the time 
integration, i is the index for the loop in the x direction, nx 
is the total number of grid points and nt the number of 
time steps. The original code with a leap-frog scheme 
has the form  

 
do j=3,nt  

u(1,j)=u(1,j-2)+(dt/dx)*u(1,j-1)*(
u(2,j-1)-u(nx-1,j-1)) 

   do i=2,nx-1 
       ····     
   enddo 
   u(nx,j)=u(1,j) 
enddo 

 
The tangent linear code created by TAMC follows, also 
maintaining correctly the periodic boundary condition: 
 

do j=3,nt 
    g_u(1,j)=g_u(1,j-2)+(dt/dx)* 

(g_u(1,j-1)*(u(2,j-1)-u(nx-1,j-1)) 
+u(1,j-1)*(g_(2,j-1)-g_u(nx-1,j-1))) 

    do i=2,nx-1 
        ····     
    enddo 
    g_u(nx,j)=g_u(1,j) 
enddo 

 
However, based on the previous code, the TAMC 
converts the tangent linear code into the adjoint form as, 
 

do j=nt,3,-1 
   adu(1,j)= adu(1,j)+ adu(nx,j) 



   adu(nx,j)=0. 
   do i=nx-1,2,-1 
        ····     
   enddo 
   adu(1,j-2)=adu(1,j-2)+adu(1,j) 

adu(nx-1,j-1)=adu(nx-1,j-1) 
            
-adu(1,j)*(dt/dx)*u(nx,j-1) 
adu(2,j-1)=adu(2,j-1) 
            
+adu(1,j)*(dt/dx)*u(nx,j-1) 
adu(1,j-1)=adu(1,j-1) 

+adu(1,j)*(dt/dx)*(u(2,j-
1)-u(nx-1,j-1)) 

adu(1,j)=0. 
enddo 

 
With the statement at the beginning, the value of the 
adjoint with be doubled at x=1, and terms related to the 
left end points will increase artificially their value. On the 
other hand, the terms related with x=nx will become 
smaller. Without checking the code carefully, this will 
create an unrealistic gradient near the both end points. 
To avoid this, all these wrong boundary conditions need 
to be commented out or considered separately. 
 
5. SUMMARY 
 

In this paper, the tangent linear and adjoint models for 
the QG model are constructed for obtaining singular 
vectors. The gradient check and adjoint relation check 
support the conclusion that these model codes have no 
errors. But there are some practical difficulties showing 
that the TLM and adjoint models obtained from TAMC 
have to be examined carefully in order to be consistent 
with the physics of the problem. Although the gradient 
check shows most accuracy when including the 
background flow evolving under different physical 
processes within each time step, this is too expensive, 
and even more expensive in the adjoint model. This will 
limit the optimization time for calculating accurate 
singular vectors. Also, some procedures like the slow 
cosine transforms, that are apparently harmless in the 
nonlinear model, are not purely invertible and cause 
serious boundary problems at walls if the adjoint of the 
cosine transform is applied repeatedly. Bred vectors are 
constructed using only the nonlinear model, and are not 
affected by these problems. They naturally lie on the 
attractor of the evolving background flow since they are 
the differences between slightly perturbed ensembles of 
nonlinear runs of the model. 

 
As expected from theory, the final SVs have a similar 
structure as the BVs and both of them have the ability to 
depict the shape of the background error. The initial SVs 
are dominated by zonal patterns with a strong meridional 
gradient but the detailed structures are somewhat 
different with different optimization times.  

 
The SVs obtained with the streamfunction and energy 
norms will be used in order to compare the initial 

perturbations with BVs and with Lyapunov vectors, and 
quantify the extent to which these vectors represent the 
initial and evolving background errors.  
 
We found that the enstrophy initial SVs, dominated by 
zonal scales (Fig. 6, left panels), evolve towards the 
shape of the more realistic final SVs (Fig. 6, right panels) 
after only one time step. A wave number filter for SV may 
be needed for a better understanding of the initial 
evolution of the synoptic scales and their representation 
of the errors of the day. 
 
We plan to use the experience acquired with these 
experiments when comparing 3D-Var with 4D-Var and 
Ensemble Kalman Filtering. 
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Fig. 2: Gradient check for different sizes of perturbation (10α ), using double precision 

 

 
 

α PV mid-level θbom θtop 

1.0 1.001716 0.9693545 0.9768672 

1.e-1 1.001742 0.9693025 0.9770426 

1.e-2 1.001708 0.9676584 0.9771303 

1.e-3 1.002060 1.021203 1.029764 

1.e-4 1.001810 1.370200 1.708439 

Fig. 1: Gradient check for different size perturbations using single precision

Table 1: Gradient check for different sizes of perturbations, using single precision and 

assuming a constant background flow within one time step 
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Fig. 3: Adjoint check  for different size of perturbation with single precision 

 

 
 

Fig. 4: Evolution of the average explained variance of the 12 hour forecast “errors of the day” as 

a function of time, using a set of 10 bred vectors started from initial random perturbations (red 

dots), and using instead surrogates (randomly chosen bred vectors, blue line).  Adapted from 

Corazza (2003). 
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Fig. 5: Background error evolution (color shaded) compared with bred vectors (contours) for (a) at 
00Z31Jan (b) at 12Z31Jan(c) 12Z31Jan (c) at 00Z01Feb and (d) 00Z02Feb.  
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d error evolution (color shaded) compared with initial singular vectors (contours) at
 optimization time of (a) 12 hours(b) 24 hours (c) 48 hours and the corresponding final
d) at 12Z31Jan (e) 00Z01Feb and (f) 00Z02Feb  



 

(a) Flat field, t=0 (b) Flat field, t=48h 

 

(c) Initial SV, t=0   (d) Final SV, t=12hr 

 

(e) Initial SV, t=0 (f) Final SV, t=48hr 

(h) BV, t=12hr (g) BV, t=0  
Fig. 7: Cosine of local (5x5) grid point projections between two fields. (a) Flat field projected on the
background error (t=0); (b) Flat field projected on the background error (t=48hr); (c) Initial SV
(optimization time=12hr) projected on the background error (t=0); (d) Final SV (optimization time=12hr)
projected on the background error (t=12hr); (e) Initial SV (optimization time=48hr) projected on the
background error(t=0); (f) Final SV (optimization time=48hr)) projected on the initial background error
(t= 48hr); (g) BV projected on the initial background error (t=0); (h) BV projected on the final
background error (t=48hr) 



 

 

 
 
 

Fig. 8: Example of the application of the Poisson solver and adjoint of Poisson solver. Left panels are the

potential vorticity, q, and potential temperature, θ, at bottom and top levels; central panel are the 

streamfunction, ψ , obtained after applying the Poisson solver; right panels are the adjoint of the potential 

vorticity and potential temperatures obtained by taking the stream function as the input for the adjoint of

Poisson solver. 
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