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1. INTRODUCTION

In this project we plan to use the quasi-geostrophic
3D-Var data assimilation simulation system developed
by Morss (1999) and Morss et al (2001) to compare
several methods for data assimilation and ensemble
forecasting. It is based on the a QG model of Rotunno
and Bao (1996), and the 3D-Var system is similar to the
NCEP operational Spectral Statistical Interpolation (SSI)
method of Parrish and Derber (1992). Hamill et al (2000)
have also used this system for testing comparing several
ensemble forecasting methods, and Hamill and Snyder
(2002) for a hybrid Ensemble Kalman Filter.

Since we want to compare 3D-Var with 4D-Var and with
the recently developed Local Ensemble Kalman Filtering
(LEKF) of Ott et al (2003), it was necessary to develop
the adjoint of this model. As a preliminary step, we
compare the analysis and forecast “errors of the day”
obtained the 3D-Var with bred vectors and with singular
vectors. Because of difficulties associated with the
adjoint model, only preliminary results are presented in
this paper. Further comparisons with Lyapunov vectors,
and singular vectors with different norms will be
presented at the conference. This comparison should
provide guidance on the optimal generation of initial
perturbations for ensemble forecasting and the relative
advantages of 4D-Var and Ensemble Kalman Filtering.

2. EXPERIMENTAL SET-UP

The quasi-geostrophic model of Rotunno and Bao (1996)
is a mid-latitude, beta plane, finite difference, channel
model that is periodic in x and has impermeable walls at
the north and south boundaries, and rigid lids at the top
and bottom. Pseudo-potential vorticity is conserved

except for Ekman pumping at the surface, v*
horizontal diffusion and forcing by relaxation to a zonal
mean state. The model is written in nondimensional form
and has 64 grid points in the zonal direction, 32 grid
points in meridional direction and 7 levels in vertical
direction. The model variables are potential vorticity q
defined at the interior levels (from levels 1 to 5) and
potential temperature T defined on the bottom and top
levels (levels 0 and 6).

As in Morss (1999) and Hamill et al. (2000) and others,
we use a single model integration as the true or “nature”
run. “Rawinsonde observations” are generated every 12
hours by randomly perturbed the true state at fixed
observation locations, which were randomly chosen at

initialization. The simulated data assimilation is
performed with a 3D-Var data assimilation scheme,
constructed by Morss (1999). In our experiments, the
same model is used to generate the truth and forecasts,
assuming a perfect model scenario.

(A) BRED VECTORS

The bred vectors (BV) are obtained through a breeding
cycle (Toth and Kalnay, 1993, 1997), which starts by (1)
adding random perturbation to the analysis; (2)
integrating for 12 hours the initial conditions from both
the breeding run and the analysis; (3) normalizing the
differences between these two nonlinear runs; (4) adding
the difference to the new analysis, and repeating steps
(2) to (4). The bred vectors are defined as the
normalized differences between breeding and 12 hour
forecast runs.

(B) SINGULAR VECTORS

Singular vectors are the orthogonal sets describing the
maximally growing perturbations. They are obtained by

assuming the perturbation (O ) behaves linearly within
the chosen “optimization” time interval t so that the
linearization of the original QG model (tangent linear
model, L) can represent its evolution this interval,

expressed as O, = Ldx, . The growth rate for a given

norm at some optimization time can be defined as the
perturbation norm after applying the tangent linear
operator for this optimization time compared with to the
initial perturbation norm defined with this norm,

<Ly, Lox, >/ <&x,,dx, >, which can also be rewritten

as <5x0,LTIﬁx0>/<8xO,8x0>, where L' is the

adjoint of the tangent linear model. The leading initial
singular vector is defined as the perturbation that
maximizes the growth at the end of the optimization
interval and can_be obtained by finding the eigenvector
of the matrix L'L with the largest singular value, as
originally done by Lorenz (1965). But, in practice, the
number of variables in numerical weather models is very
large and because of its large dimension, it is difficult to
write in matrix form. The tangent linear model and its
adjoint codes, referred to as TLM and ADM have been
developed for the QG model of Rotunno and Bao (1996)
for this project. A first version of these codes for the TLM
and ADM were originally generated by the widely used
tangent linear adjoint model compiler (TMAC, Giering,
1996). This compiler provides automatic differentiation in
forward (TLM) and reverse mode (ADM) for programs



written in Fortran. In our present experiments, SVs are
defined with the potential enstrophy norm and with
different optimization times: 12hours, 24hours and
48hours. We used both the power method and, as a
verification, the Lanczos algorithm to calculate the
leading SV.

It is necessary to test the correctness of both the TLM
and ADM codes. For the TLM, we use the gradient check
ratio is used as in Navon et all (1992), defined as
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represents the nonlinear model, « is the size of the
perturbation and the ratio, d, represents the degree of
linearity. With TAMC, we are able to try the expensive
but accurate approach of letting the background flow
evolve within the different steps of the TLM. Using single
precision, the ratios are good (close to 1) within one-day
time integrations but start to degrade for the potential
temperatures at the bottom and top levels. When testing
with different size of the perturbations (Fig. 1), the ratios
remain close to 1 only if & is within the range 0.001 to 2,
suggesting that round-off errors dominate, especially for
potential temperatures, for amplitudes less than 0.001. If
we assume (as usually done in operations) that the
background is constant within one time step, the
gradient check becomes worse. The ratios with different
perturbation sizes are listed in table 1. Given these
results, we modified TLM and adjoint models using
double precision in order to avoid the dominance of
round-off errors. Fig. 2 shows that the gradient check is
greatly improved and can be extended to 1. when
including the background flow evolution within each time
step. The ratios for the TLM with constant background
stay close to a value of 1.00 for integrations as long as 3
days.

, Where M

For testing the correctness of the adjoint code, it is
customary to take advantage of the identity
<Lox,,Lox, >

.
<O0x,,0x, >

adjoint variable. Even with single precision, when the
tangent model accuracy is poor, the adjoint verification
remains extremely good as shown in Fig 3, which can
only suggest that the adjoint model is correctly coded.

=1 where the star represents an

3. COMPARISONS BETWEEN BVS AND SVS

Corazza et al (2002) showed that bred vectors (BVs)
have the ability to depict the structures of the
background error in a data assimilation system like
3D-Var, which does not include errors of the day in the
background error covariance. The fact that BVs carry
information on the shape of the errors of the day, is
apparent in Fig. 4 adapted from Corazza et al. (2002). It
shows that the subspace spanned by a set of 10 bred
vectors explains 96-98% of the variance of the
background error. Fig 5 (a)-(d) are examples showing

the resemblance between one randomly chosen BV and
the background error from day Jan31 to Feb02, even
when the background error grows into smaller scales like
the area in the northeastern portion in Fig.5(d)

The same background flow is used to calculate the initial
and final SVs corresponding to the periods in Fig. 5, and
is shown in Fig 6(a)-(f). Unlike the BVs, the initial
singular vectors with different optimization times at day
31 show a more zonal pattern but evolve into final
singular vectors, which also share a similarity with
background errors and bred vectors. In this QG mode, it
seems that the singular vectors with the optimization
time of 12 hour provide the best description of the
background error. This is because large growth rates of
the temperature perturbations at top and bottom are
created when applying the adjoint model. This pattern
persists in the initial perturbations when they are
normalized with the analysis error. This problem will be
discussed in more detail in the next section.

In order to compare the extent to which the background
error locally projects on either the BVs or on the initial
and final SVs, we compute the cosine of the angle
between two chosen fields. We use local regions of 5 by
5 grid points centered at each grid point and compute
the cosine between the vectors of 25 values for the two
fields. For comparison, we also use a flat field to project
to the background error. As shown in Fig. 7, the results
from projecting Initial SVs to the background error are
similar to those using the flat fields. They project more to
the flat part of the background error at initial time and
miss the portion with fast growth, like the northeast part
in Fig 7(c), thought the final SV do project much better
onto some of the structures of the background error. On
the other hand, the BVs project more onto fast growing
background errors, and maintain a shape closer to the
background error throughout the integration.

4. PRACTICAL PROBLEMS WITH THE ADJOINT
MODEL

In this section we discuss two of several problems we
have found in developing the adjoint of this model
starting with the TAMC compiler, which is otherwise very
helpful, also associated with the way the original
nonlinear QG model is coded.

(A) ADJOINT OF THE POISSON SOLVER

In this QG model, the Poisson equation relating the
potential vorticity and potential temperature to the
streamfunction are solved in spectral coordinates.
Because of the boundary conditions, the spectral
transform is written as a complex exponential in x
direction, and in the y direction it is written in terms of
cosine y for the zonal mean component, and sine y for
the remainder of the solution. The adjoint code for the
solver of the Poisson equation was originally created by
Morss (1998).

Mathematically, the Poisson solver multiplies each



spectral component of the field by the inverse of the
wave number squared and thus the amplification
becomes proportional to this factor, causing long waves
to be naturally amplified. The model solves the
continuous Poisson equation
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the stratification.
The boundary conditions at bottom and top levels are
cast in terms of potential temperature, the vertical
derivative of the streamfunction.
o v
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After converting into spectral coordinates, the Poisson
equation can be written as a simple tri-diagonal matrix
equation, where p is the zonal wave number, q is the
meridional wave number and k is the vertical level, which
can solved with a fast LU decomposition.
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The diagonal elements include the coefficients of both
horizontal wave numbers and vertical stratification while
the off diagonal elements contains the vertical terms only.
For low wave numbers, this matrix is less diagonal

dominant (need |bk|>|ak|+|ck|) and has large

values of Qpgk.
For simplicity, we write the streamfunction as
v =(V?)'g in the forward model and assume it is

self-adjoint. In the adjoint model, the adjoint of the
Poisson solver will be expressed as ¢ =(V*) "y  and

therefore the adjoint of the potential vorticity will be
dominated by low wave numbers. Since potential
temperature is a first order vertical derivative of the
streamfunction, the temperature perturbation becomes
larger than potential vorticity after the application of the
adjoint of the Poisson solver. Therefore, the long wave
patterns in the temperature take over the growth of the
total perturbation after several time steps and show a
strongly zonal pattern in all adjoint fields. Fig. 8 is an
example of the applying the Poisson solver for potential
vorticity and temperature and taking the resulting
streamfunction as the input for the adjoint of the Poisson
solver. In this example, because of the presence of
(small amplitude) long wave components in the initial
potential vorticity and temperature, the long waves in the

adjoint of vorticity and temperature fields become 10
times larger than the initial fields. Thus, this long wave
pattern has large growth rate in this QG model and
dominates after a short time. Note also that in Fig. 8,
extremely large values appear close to the walls after the
adjoint of the Poisson solver is applied. This problem is
created when applying a slow cosine Fourier transform
for the zonal mean component, because the problem is
numerically ill-posed, creating a kink on the
streamfunction for zonal wave number zero (Fig.9). We
were able to correct for this problem by making the input
array into a real odd function and solving with the Fast
Fourier cosine transform developed for the ECMWF
model (Fig. 9).

(B) PROBLEMS WITH THE BOUNDARY
CONDITIONS IN THE ZONAL DIRECTION

The codes for TLM and adjoint models were
automatically generated by TAMC based on the original
nonlinear model. This is done by linearizing each line in
the code and casting it into the equivalent of a matrix and
its transpose form without the knowledge of the physical
meaning of each term. In the original QG model, an extra
grid point is used to impose the periodic boundary
conditions, and the boundary points are considered
separately at the beginning and last step in a horizontal
direction loop. Code for a simple nonlinear advection
equation is shown as an example of the problem that
arises from this approach. Here j is index for the time
integration, i is the index for the loop in the x direction, nx
is the total number of grid points and nt the number of
time steps. The original code with a leap-frog scheme
has the form

do j=3,nt
u(l,j)=u(l,j-2)+(dt/dx)*u(l,j-1)*(
u(2,3-1) -u(nx-1,3-1))
do i=2,nx-1

enddo
u(nx,j)=u(l,])
enddo

The tangent linear code created by TAMC follows, also
maintaining correctly the periodic boundary condition:

do j=3,nt
g u(l,j)=g_u(l,j-2)+(dt/dx)*
(g_u(l,j-1)*(u(2,j-1)-u(nx-1,3j-1))
+u(l,j-1)*(g_(2,j-1)-g_u(nx-1,3-1)))
do i=2,nx-1

enddo
g_u(nx,j)=g_u(1,3)
enddo

However, based on the previous code, the TAMC
converts the tangent linear code into the adjoint form as,

do j=nt,3,-1
adu(l,j)= adu(l,j)+ adu(nx,j)



adu (nx,j)=0.
do i=nx-1,2,-1

enddo
adu(l,j-2)=adu(l,j-2)+adu(l, j)
adu (nx-1,j-1)=adu(nx-1,3j-1)

-adu(1,j) * (dt/dx) *u(nx, j-1)
adu(2,j-1)=adu(2,j-1)

+adu(1,j) * (dt/dx) *u(nx,j-1)
adu(l,j-1)=adu(l,j-1)
+adu(1,3)* (dt/dx) * (u(2,3-
1)-u(nx-1,3j-1))
adu(1,3)=0.
enddo

With the statement at the beginning, the value of the
adjoint with be doubled at x=1, and terms related to the
left end points will increase artificially their value. On the
other hand, the terms related with x=nx will become
smaller. Without checking the code carefully, this will
create an unrealistic gradient near the both end points.
To avoid this, all these wrong boundary conditions need
to be commented out or considered separately.

5. SUMMARY

In this paper, the tangent linear and adjoint models for
the QG model are constructed for obtaining singular
vectors. The gradient check and adjoint relation check
support the conclusion that these model codes have no
errors. But there are some practical difficulties showing
that the TLM and adjoint models obtained from TAMC
have to be examined carefully in order to be consistent
with the physics of the problem. Although the gradient
check shows most accuracy when including the
background flow evolving under different physical
processes within each time step, this is too expensive,
and even more expensive in the adjoint model. This will
limit the optimization time for calculating accurate
singular vectors. Also, some procedures like the slow
cosine transforms, that are apparently harmless in the
nonlinear model, are not purely invertible and cause
serious boundary problems at walls if the adjoint of the
cosine transform is applied repeatedly. Bred vectors are
constructed using only the nonlinear model, and are not
affected by these problems. They naturally lie on the
attractor of the evolving background flow since they are
the differences between slightly perturbed ensembles of
nonlinear runs of the model.

As expected from theory, the final SVs have a similar
structure as the BVs and both of them have the ability to
depict the shape of the background error. The initial SVs
are dominated by zonal patterns with a strong meridional
gradient but the detailed structures are somewhat
different with different optimization times.

The SVs obtained with the streamfunction and energy
norms will be used in order to compare the initial

perturbations with BVs and with Lyapunov vectors, and
quantify the extent to which these vectors represent the
initial and evolving background errors.

We found that the enstrophy initial SVs, dominated by
zonal scales (Fig. 6, left panels), evolve towards the
shape of the more realistic final SVs (Fig. 6, right panels)
after only one time step. A wave number filter for SV may
be needed for a better understanding of the initial
evolution of the synoptic scales and their representation
of the errors of the day.

We plan to use the experience acquired with these
experiments when comparing 3D-Var with 4D-Var and
Ensemble Kalman Filtering.
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Fig. 1: Gradient check for different size perturbations using single precision

Table 1: Gradient check for different sizes of perturbations, using single precision and

assuming a constant background flow within one time step

o PV mid-level Obom Otop
1.0  1.001716 0.9693545 0.9768672
16" 1.001742 0.9693025 0.9770426
1.2 1.001708 0.9676584 0.9771303
1.e-3 1.002060 1.021203 1.029764
1.e*  1.001810 1.370200 1.708439

Fig. 2: Gradient check for different sizes of perturbation (10*), using double precision
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Fig. 4: Evolution of the average explained variance of the 12 hour forecast “errors of the day” as
a function of time, using a set of 10 bred vectors started from initial random perturbations (red
dots), and using instead surrogates (randomly chosen bred vectors, blue line). Adapted from
Corazza (2003).



Fig. 5: Background error evolution (color shaded) compared with bred vectors (contours) for (a) at
00Z31Jan (b) at 12Z31Jan(c) 12Z31Jan (c) at 00Z01Feb and (d) 00Z02Feb.
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Fig. 6 Background error evolution (color shaded) compared with initial singular vectors (contours) at
00Z31Jan with an optimization time of (a) 12 hours(b) 24 hours (c) 48 hours and the corresponding final
singular vectors (d) at 12Z31Jan (e) 00201Feb and (f) 00Z202Feb



(a) Flat field, t= 0 - (b) Flat field, t=48h

SEI
(f) Final SV, t=48hr

Fig. 7: Cosine of local (5x5) grid point projections between two fields. (a) Flat field projected on the
background error (t=0); (b) Flat field projected on the background error (t=48hr); (c) Initial SV
(optimization time=12hr) projected on the background error (t=0); (d) Final SV (optimization time=12hr)
projected on the background error (t=12hr); (e) Initial SV (optimization time=48hr) projected on the
background error(t=0); (f) Final SV (optimization time=48hr)) projected on the initial background error
(t= 48hr); (g) BV projected on the initial background error (t=0); (h) BV projected on the final
background error (t=48hr)
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Fig. 8: Example of the application of the Poisson solver and adjoint of Poisson solver. Left panels are the
potential vorticity, q, and potential temperature, 6, at bottom and top levels; central panel are the
streamfunction, y , obtained after applying the Poisson solver; right panels are the adjoint of the potential
vorticity and potential temperatures obtained by taking the stream function as the input for the adjoint of

Poisson solver.

Fig. 9: Meridional cross-section for potential temperature at the bottom level using the original slow cosine

Fourier transform (black) and after using the Fast complex Fourier transform (blue)
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