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1.  INTRODUCTION 

Uncertainty in a particular numerical weather 
prediction (NWP) forecast can arise from imperfect 
specification of the initial conditions as well as from 
errors associated with finite differencing (or spectral 
truncation) or physical parameterizations.  Despite the 
observed success of day-to-day short range forecasts, it 
is becoming increasingly recognized that no NWP 
forecast can be considered complete without a 
concomitant forecast of the flow-dependent predictability 
(Palmer 2000).  In principle, this flow-dependent 
predictability could be assessed by predicting the 
evolution of the probability density function (PDF) of the 
atmospheric state (or more accurately the PDF of the 
model’s representation of that state).  In practice 
however, uncertainties in the specification of the initial 
PDF and the large dimensionality of the phase space of 
the atmosphere (NWP model) make this PDF prediction 
difficult.  In order to reduce the dimensionality of the 
phase space that needs be explored in predictability 
assessments, carefully chosen samples of estimates of 
the atmospheric state are chosen as initial conditions for 
NWP models.  The NWP model is then integrated 
forward in time from each initial estimate of the 
atmospheric state to create an ensemble of forecasts.  
The statistics of the ensemble output are subsequently 
used to evaluate the predictability of the flow. 

 
Ensemble members are formulated to account for 

uncertainties in the initial conditions or uncertainties in 
the model physics (Palmer 2000).  Typically, this 
involves constructing a suite of initial conditions and 
integrating a model forward several times, to generate 
an ensemble of forecasts.  Ensemble member spread 
can also be achieved through the use of different 
physics packages, such as a suite of cumulus 
parameterizations schemes, or by adding stochastic 
perturbations to the model physics at intermediate 
times.  Lastly, ensemble spread can also be achieved 
through the addition of random noise to a forecast, 
either to the initial conditions or model forecast state. 

  
Most work in ensemble forecasting has been 

focused on the generation of initial condition 

perturbations through a variety of methods.  The 
generation of initial perturbations for an ensemble is 
governed by two principles:  1) the initial perturbations 
should be constructed using some knowledge of the 
statistics of the analysis error and 2) the initial ensemble 
perturbations should share the structure of those 
perturbations which amplify rapidly over the forecast 
interval of interest.  Two methods are used operationally 
to generate initial perturbations for ensemble forecasting 
applications.  One of these methods, currently in use at 
the European Centre for Medium Range Forecasts 
(ECMWF), involves the use of singular vectors (SVs, 
also known as optimal perturbations), which are those 
perturbations which amplify linearly most rapidly for a 
given norm, given basic state, over a prescribed time 
interval (Molteni et al. 1996).  The second method, in 
use at the National Centers for Environmental Prediction 
(NCEP), utilizes a bred mode technique, which uses 
previous forecasts to ensure that the perturbations will 
amplify over the next forecast interval (Toth and Kalnay 
1997). 

  
SVs are particularly useful for ensemble 

forecasting, as they provide large spread (though not 
necessarily sufficiently large spread) over a prescribed 
forecast interval.  Additionally, the choice of the analysis 
error covariance metric (or some appropriate surrogate 
for the analysis error covariance metric) as a measure 
of initial amplitude ensures that the SVs are constructed 
using knowledge of the characteristics of analysis 
uncertainty.  Although SVs have shown utility in their 
use for the generation of initial condition ensemble 
members, there are serious limitations to their efficacy 
including the computation cost of calculating SVs, the 
validity of the linear assumption, and the number of 
members needed to construct a reasonably sized 
ensemble.  Calculating SVs is computationally 
expensive, as multiple integrations of both the linearized 
version of an NWP model and its adjoint are required in 
the iterative schemes used to solve the eigenvalue 
problem that defines the SVs.  For any ensemble 
prediction system, there is no a priori means of 
identifying the number of ensemble members necessary 
needed in an ensemble for any particular forecast. 

 
Adjoint derived forecast sensitivities can be used to 

estimate the change in a particular response function 
given any arbitrary, but small, perturbation (e.g., Errico 
1997).  In particular, the sensitivity gradient with respect 
to the model initial conditions can be used to estimate 
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the change in response function given changes to the 
model initial state.  Given a measure of analysis error 
and a sensitivity gradient for a particular response 
function derived from a single integration of the adjoint 
model, one can estimate the likely ranges of values of a 
response function without integrating the NWP model 
more than once.  Although this method does not suffer 
the burden of the computational cost of calculating SVs, 
the linearity assumption is still present, as well as 
concerns about the ensemble size. 

 
In this presentation, adjoint-derived forecast 

sensitivity gradients are used in conjunction with 
differences between operational analyses to construct 
an ensemble of forecasts for a particular response 
function.  The procedure for creating an ensemble of 
forecasts using this methodology is outlined in section 2.  

In section 3, examples from the ensemble procedure 
are presented and discussed.  A summary and outline 
for future work can be found in section 4. 
 
2. MOTIVATION AND METHODOLOGY 
a) Motivation 

At any given analysis time, a comparison of 
analyses within and between operational centers 
reveals that there may be considerable discrepancies 
between the initial conditions used for the various 
operational models.  These differences between 
analyses can be attributed to differing data assimilation 
algorithms, as well as the usage of different types and 
subsets of data.  To directly compare various 
operational analyses, all analyses are first interpolated 
onto a common grid.  Assuming the interpolation does 
not introduce new error, it is clear that operational 

Figure 1.  Temperature difference at σ = 0.85 (color filled, interval 0.5 K) between (a) Eta and AVN model 
analyses and (b) UKMET and NOGAPS model analyses, as well as meridional wind difference at σ = 0.75 
(color filled, interval 2 m s-1) between (c) Eta and AVN model analyses and (d) UKMET and NOGAPS model 
analyses valid at 0000 UTC 20 January 2002.  Also plotted is the sensitivity of the forecasted average 
temperature with respect to initial distribution of temperature (a) and (b) at σ = 0.85 (contours, interval 1 x 10-3 K 
K-1), as well as with respect to meridional wind (c) and (d) at σ = 0.75 (contours, interval 2 x 10-4 K s m-1) at 
0000 UTC 20 January 2002; where negative values are dashed and the zero contour has been omitted. 



analyses valid at the same time can exhibit considerable 
differences (Fig. 1).  A comparison of temperature at σ = 
0.85 between NCEP’s Eta and Aviation model analyses, 
as well as between the Navy NOGAPS and United 
Kingdom Meteorological Office’s (UKMET) model 
analyses reveals that lower tropospheric temperature 
differences can be significantly large, and in fact can 
exceed 2 K in certain locations (Figs. 1a and b).  
Likewise, a comparison of the analyzed meridional wind 
at σ = 0.75 shows the differences between the 
operational analyses exceed 10 m s-1 in certain 
locations.  The comparison also reveals that the size of 
the analysis differences depends on which models are 
being compared, as well as which variable and level are 
chosen for the comparison (Fig. 1). 

 
Although the analysis differences are not 

necessarily representative of the actual analysis error, 
they do provide a means for representing analysis 
uncertainty.  Because of this, the analysis differences 
can be used as initial time perturbations to create an 
ensemble of forecasts.  Each analysis could be used to 
initialize an NWP model, and an ensemble of forecasts 
could be created, similar to performing a model impact 
study.  However, the effect of the analysis perturbations 
on a particular response function can be estimated by 
using an adjoint-derived sensitivity gradient (see below), 
without running the nonlinear model several times. 

 
Any response function can be used in this 

calculation, but for this work, R1 (defined as the 36-h 
forecast temperature averaged over the Midwest on the  
σ = 0.85 surface) is chosen for its simple interpretation 
and potential operational interest for the upper Midwest.  
If the analysis differences have any projection on the 
initial time sensitivity gradients for R1, estimates of 
values for R1 can be calculated.  The estimate of the 
change in the response function is simply an inner 
product, and as such, will be largest if both the analysis 
differences and sensitivity gradients are large, or small if 
either the sensitivity gradients or analysis differences 
are small.  The actual calculation for the estimated 
change in the response function is performed by 
summing over the entire domain point by point the 
product of the analysis difference with respect to each 
variable and the initial condition sensitivity with respect 
to that same variable.  There are certain locations where 
the analysis differences have a large projection onto the 
sensitivity gradient, such as in temperature at σ = 0.85 
over southern Canada and the north central United 
States (Figs. 1a and b) for the analysis valid at 0000 
UTC 20 January 2002.  However, there are also regions 
in which the analysis differences are very large, but the 
sensitivity gradients are extremely small or near zero, 
such as over eastern North America and off of the coast 
of British Columbia (Fig. 1c). 

  
b) Methodology 
      The adjoint model used for this study is a 
component of the MM5 Adjoint Modeling System (Zou et 
al. 1997).  This modeling system, based upon version 
one of the Pennsylvania State University/National 

Center for Atmospheric Research fifth generation 
mesoscale model (MM5), includes the nonlinear MM5 
model, its TLM, and corresponding adjoint.  The MM5 
model is a nonhydrostatic, limited area, primitive 
equation model which uses as its vertical coordinate a 
terrain following sigma coordinate.  For all of the 
sensitivity calculations performed, the nonlinear version 
of MM5 is used to create a basic state about which the 
TLM and adjoint models are linearized.  For the TLM 
and adjoint integrations, the basic state is updated every 
time step. 
 
      The domain for the nonlinear, TLM, and adjoint 
integrations is a 90 km, 70 x 48 horizontal grid, with 10 
evenly spaced sigma levels in the vertical (top pressure 
level in the model is 100 hPa).  The nonlinear model is 
initialized from the National Centers for Environmental 
Prediction (NCEP) Eta model analysis (on the AWIPS 
104 grid) interpolated to the MM5 grid, and lateral 
boundaries are updated using the NCEP Eta model 
forecast.  The nonlinear integrations use the following 
physical parameterizations: the Grell convective 
scheme, a bulk aerodynamic formulation of the 
planetary boundary layer, horizontal and vertical 
diffusion, dry convective adjustment, and explicit 
treatment of cloud water, rain, snow and ice.  The TLM 
and adjoint integrations use the same parameterizations 
(or their adjoints), but the effects of moisture are 
neglected.  This means that the TLM and adjoint models 
are integrated using only dry dynamics about the moist 
basic state created from the nonlinear model run. 

  
The first step in the ensemble procedure is to first 

define a control 36-h MM5 forecast trajectory initialized 
using the NCEP Eta model analysis and forecast for 
initial and boundary conditions respectively.  The adjoint 
model is then run about this basic state trajectory, using  
as its input, the gradient of the response function R1 
(defined above), to calculate sensitivity with respect to 

the initial conditions.  Analysis differences ( )i
0xδ  are 

then determined from the differences between the 
NCEP Eta, NCEP Aviation, NCEP NGM, UKMET, and 
Navy NOGAPS model analyses interpolated to the MM5 
grid.  From these five model analyses, we may construct 
20 initial perturbations (10 positive, and 10 negative).  
Estimates for the change in the response function are 
then calculated using these analysis perturbations: 
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0
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Because the calculation is a linear estimate, only 10 
independent (positive) perturbations are necessary, as 
the change for the negative perturbations is determined 
by multiplying the result by negative one.  From these 
linear estimates, bounds on the value of the response 

function may be determined by the largest  
calculated. 

iR1δ

 
As a check on the validity of our linear estimate, the 

change in R1, ∆R1, is evaluated from differences 



between the nonlinear model runs, which are initialized 
from perturbed analyses (by adding and subtracting the 
analysis perturbations to come up with two new 
analyses).  As an example, one of the sets of perturbed 
nonlinear model integrations involves re-running the 
model after adding and subtracting perturbations 
derived from differences between the NCEP Eta and 
NCEP Aviation model analyses: 

( ) ( )etaavnetaeta RRR 010011 xxx −±=∆ −± δ , 

where  is the analysis used to create the control 

forecast, and  are the two perturbed 
analysis.  If the dynamics are linear, then the nonlinearly 
calculated change in the response function 

eta
0x

avnetaeta −± 00 xx δ

( )( )avnetaR −±∆ 1  will be the same as the linear estimate 

( )( )avnetaR −±
1δ  for the change in the response 

function. 
 

For a sufficiently large ensemble size, and for a 
realistic estimate of the initial condition uncertainty, 
periods for which the chosen response function has 
enhanced or decreased forecast uncertainty can be 
determined.  If the estimated change in the response 
function is relatively large, the analysis differences or 
the forecast sensitivity gradients (or both) must be large, 
consistent with that particular forecast exhibiting 
relatively high forecast uncertainty.  Similarly, if the 
estimated change in the response function is relatively 
small, higher confidence can be placed on the control 
forecast for the response function, as a small linear 
estimate would be consistent with a particular forecast 
exhibiting rather low forecast uncertainty. 

 
3. EXAMPLES 

 
As with any application which utilizes an adjoint 

method, the validity of the linearity assumption must be 
checked.  For the ensemble calculations, this involves 
comparing the estimated change in the response 
function (δR) with the actual change in the response 
function (∆R) calculated as a difference in the response 
function evaluated from two nonlinear forecasts.  For the 
forecast period spanning 0000 UTC 18 January 2002 
through 1200 UTC 24 January 2002 (hereafter referred 
to as the winter week), the linearity assumption holds 
quite well, when comparing a time series of the 
estimated and actual changes in the 36-h forecasted 
response function (Fig. 2).  For the winter week 
ensemble estimates, correlation coefficients between δR 
and the ∆R are about 0.85, and as high as 0.95, with the 
exception being for the Eta-NGM analysis perturbation 
(Table 2).  This suggests that the linear estimates for 
the change in the response function can serve as a 
computationally inexpensive proxy for the actual 
change.   

 
 

 
 
 
 
 
 
 
 
 
 
 
The problem with the linearity test for the Eta-NGM 

perturbation can be attributed to the size of the analysis 
differences between the two model analyses.  Since 
both of the models are initialized using the same data 
assimilation algorithm, just mapped to a different grid, 
their analyses are extremely similar, and as a result, the 
analysis differences are typically an order of magnitude 
or more smaller than the differences calculated between 
the other operational analyses.  The problem arises in 
the nonlinear model because of the inclusion of diabatic 
processes, which are excluded in the linear estimate for 
the change in the response function.  This is of little 
consequence to these calculations, as the spread for 
this particular ensemble member is in general much 
smaller than for the other members (F

Figure 2.  Time series of the actual change in response 
function (∆R1, dashed lines) and estimates for the 
change in response function (δR1, solid lines) relative to 
the control forecast (zero value) valid from 0000 UTC 18 
January 2002 through 1200 UTC 24 January 2002 for 
perturbations derived from analysis differences between 
(a) EA, (b) EN, (c) EO, and (D) EU.  Abbreviations for 
model analysis differences are identified in Table 1. 

ig. 2), and as a 
resu  little useful information. 

e nonlinear differences for the 
summer week (Fig. 3). 

n 
comparison with the warm season.  This statement is  

lt, contains
  
For the week spanning 0000 UTC 20 June 2002 

through 1200 UTC 27 June 2002 (hereafter referred to 
as the summer week), the correlation coefficients 
between the linear estimate and actual nonlinear 
differences is much smaller than those for the winter 
week (Table 2).  The largest correlation for the summer 
week is only 0.69, with the smallest being 0.224 
(excluding the 0.083 for the Eta-NGM perturbation).  
This can also be seen in the time series comparing the 
linear estimates with th

 
In general, the linearity assumption appears to be 

more valid for this calculation in the cold season, i



 

 

 
 
 
 
 

Figure 3.  As in Fig. 2, but valid from 0000 UTC 20 
June 2002 through 1200 UTC 27 June 2002 for 
perturbations derived from analysis differences 
betw en (a) EA, (b) EN, and (c) EO.  Abbreviations for 
model analysis differences are identified in Table 1. 

e

 
 

consistent with calculations that have been performed 

estimates for 
the 

r line

ummer week, the spread is in general 
muc

smaller, and therefore making the linearity assumption  

operationally for the past two years, and not specific to 
the two weeks chosen for this discussion. 

 
 time series showing all of the linear A

winter week shows that the spread amongst 
ensemble members varies from forecast to forecast, 
with the smallest spread being K1±  and the largest 

being K5±  for the winter week 4a).  It is evident 
that ou ar estimate is providing about the same 
spread as the ensemble of forecasts calculated by 
integrating the nonlinear model several times (Fig. 4).  
Fig. 4a shows that there appear to be regimes in which 
the forecast uncertainty is relatively low (low spread, 
such as between 18 January 2002 and 21 January 
2002), and likewise periods of relatively high forecast 
uncertainty (high spread, such as between 21 January 
2002 and 24 January 2002).  The verification for the 
winter week appears to have little correlation with the 
ensemble spread, which is somewhat different from the 
findings for other weeks.  Although the verification tends 
to lie in the vicinity of the ensemble spread, there are 
often times in which the forecast spread is not large 
enough to account for the forecast error.  However, in 
general, the largest forecast busts are associated with a 
large spread in the ensemble members, such as for 
1200 UTC 22 January 2002 (Fig. 4a), which is 
particularly useful then for assessing the uncertainty of a 
particular forecast. 

  

 (Fig. 

For the s
h smaller than what is typical for cold season 

calculations (Figs. 4 and 5).  This can be attributed to 
smaller analysis differences or smaller forecast 
sensitivity for the forecasted temperature over the upper 
Midwest.  The fact that the linearity correlation 
coefficients are so much smaller for the summer week is 
consistent with the analysis differences being much 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Time series of (a) estimates for the change 
in response function (δR1) and (b) actual change in 
response function (∆R1) valid from 0000 UTC 18 
January 2002 through 1200 UTC 24 January 2002. 
The perturbations derived from the model analysis 
differences are color coded, and the abbreviations are 
identified in Table 4.1.  DIFF is the verified forecast 
error, and is calculated by taking the difference 
between the verification of and the control forecast of 
R1. 

 

Figure 5.  As in Fig. 4, but from 0000 UTC 20 June 
2002 through 1200 UTC 27 June 2002. 
 
less valid.  However, it is also likely that during the warm 
season, the forecasted temperature may be more 
dependent on local effects such as radiational heating, 
boundary layer mixing, or local circulations, rather than 
the larger scale dynamics, making the forecast 
uncertainty much more dependent on the 
parameterization of such processes.  In general, the 
warm season ensemble spread is much smaller, despite 
the fact that larger forecast busts occur on a regular 
basis. 

 
 



4.  FUTURE WORK 

regio , or for different forecast parameters, so long as 
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In order to truly assess the practicality of this 
ore rigorous evaluation of forecast 
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singl babilistic information 
 contained in the ensemble of forecasts.  A statistical 
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r this work.  An ensemble utilizing adjoint-sensitivities 

such
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ind shear. 
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Abbreviation Analysis Difference 
The use of adjoint-derived sensitivity gradients in 

conjunction with analysis differences appears to be an 
effective, and efficient means of estimating the behavior 
of a full ensemble, without the need to run a nonlinear 
model several times.  Compared with the cost of SV 
generated initial ensemble members, the sensitivity 
based method is computationally inexpensive, as it 
requires a single iteration of the nonlinear and adjoint 
models.  The choice of response function allows one to 
tailor this methodology to the needs of the forecaster.  
The ensemble can be formulated to be specific to a 

n
response function is a differentiable functions of the 

model forecast variables. 
 
In order for this methodology to be practical, the 

following questions must be addressed:  1) What is the 
minimum number of initial perturbations necessary to 
generate a useful ensemble of forecasts?  2) Are there 
means of generating more ensemble members using 
only the currently available operational analyses?  3) 
What is the maximum forecast length that the linearity 
assumption can be made to estimate a change in 
response function?  4) What are the reasons for the 
notable differences between the warm and cold season 
ensemble forecasts for our particular response function? 

 

methodology, a m
p
more difficult than evaluating the performance of a 

e deterministic forecast, as pro
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evaluation of the two years of ensemble calculations 

ds to be performed, to fully assess the applicability 
is methodology.  Lastly, this methodology should be 
ied to response func
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could be useful in a variety of forecasting platforms, 

 as in severe weather forecasting by providing a 
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2 

(0.112)  
Summer (+) 

(-) 
0.224 

(0.468) 
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Table 1.  Abbreviations used for differences between 
model analyses.

Table 2.  Correlation coefficients between the linear 
estimate for the change in response function (δR1) 
with the actual change (∆R1). 


