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1.  Introduction 
 
The National Severe Storms Laboratory 
(NSSL) has played the primary role in 
the development and evaluation of U. S. 
National Weather Service (NWS) severe 
weather decision-making applications 
for the Weather Surveillance Radar – 
1988 Doppler (WSR-88D).  The 
development process at NSSL begins 
with basic and applied research 
including field experiments, theoretical 
studies, and case studies designed to 
better understand storms and relate 
weather to remotely sensed signatures.  
This research leads to the development 
of applications, including computer 
algorithms employing sophisticated 
image processing and artificial 
intelligence, and innovative display 
systems used to enhance the research 
and development process.  Evaluations 
are conducted using archived case 
studies as well as real-time proof-of-
concept tests at NWS forecast offices 
(NWSFO) during actual severe weather 
warning operations.  Feedback from the 
evaluations leads to further research and 
refinement of applications, and ultimate 
operational applications for users.  The 
new concepts continue to be tested to 
determine whether they will be included 
in future operational systems that help 

guide and manage the severe weather 
warning decision-making process. 
 
NSSL developed many of the primary 
severe weather algorithms for the WSR-
88D, and is currently developing 
improvements to these algorithms.  The 
traditional WSR-88D severe weather 
algorithms have been designed for use 
with a single-radar data source.  
Although NSSL-developed algorithm 
guidance has led to an improvement of 
the NWS severe weather warning 
statistics, it is understood that effective 
warning decisions can only be made via 
the integration of information from 
many sources, including input from 
multiple remote sensors (multiple radars, 
mesoscale models, satellite, lightning, 
etc.).  Therefore, it has been a 
requirement for NSSL to upgrade the 
traditional single-radar severe weather 
algorithms to multiple-sensor algorithms 
to take advantage of additional data 
source.  This reduces the uncertainty of 
the measurements and increases the 
accuracy of the detection, diagnosis, and 
prediction of severe weather.  Another 
requirement of new NSSL algorithms is 
to rapidly update all input source data so 
that the latest information is always 
used.  For example, for radar data (both 
single- and multiple-radar sources), a 



“virtual volume” concept is employed 
which replaces individual elevation 
scans of data from any radar as they 
become updated, rather than always 
processing data at the end of each 
complete volume scan.  Rapidly 
updating algorithm output will make 
guidance available for the forecaster 
earlier, thus leading to an increase in 
warning lead-time. 
 
NSSL is challenging itself scientifically 
to provide improved tools and 
knowledge to improve warning decision 
making guidance applications.  The 
goals of this endeavor are to 1) improve 
decision-making efficiency, by 
providing easy access to the most 
important information for decision-
making (including quick computations 
for many storms), 2) improve public 
service with new types of warning 
products, and 3) improve warning 
accuracy and lead-time.  All these 
applications must developed in a 
scientifically sound manner. 
 
The NSSL Warning Decision Support 
System – Integrated Information 
(WDSS-II; Lakshman 2002) has 
provided an invaluable application 
programmer interface (API) to facilitate 
the development of many new multiple-
sensor severe weather applications for 
severe weather warning services.   In just 
the past two years (2002-2003), NSSL 
has developed a variety of new 
algorithms and major upgrades to 
existing algorithms.  NSSL has 
converted its suite of single-radar severe 
weather detection algorithms to operate 
using multiple radars.  These include 
multiple-radar versions of the Storm Cell 
Identification and Tracking (SCIT) 
algorithm (Johnson, et al. 1998), the Hail 
Detection Algorithm (HDA; Witt et al. 

1998).  Under development is a 
multiple-radar replacement for both the 
Mesocyclone Detection Algorithm 
(MDA; Stumpf et al. 1998) and the 
Tornado Detection Algorithm (TDA; 
Mitchell et al. 1998) known as the 
Vortex Detection and Diagnosis 
Algorithm (VDDA).  NSSL has also 
developed a host of new radar diagnostic 
derivatives, including high-resolution 
gridded fields of vertically integrated 
liquid (VIL), Probability of Severe Hail, 
Maximum Expected Hail Size, Velocity-
Derived Rotation, and Velocity-Derived 
Divergence.  Time-integrated gridded 
fields of some of the above have also 
been developed, including hail swath 
information (maximum size and hail 
damage potential) and velocity-derived 
rotation tracks.   NSSL has also 
developed new statistical clustering 
techniques for multiple-scale storm 
detection and motion estimation, 
advanced multiple-sensor data quality 
control using neural networks, and is 
developing several new multiple sensor 
prediction algorithms (lightning 
initiation and prediction and 
precipitation estimation). 
 
2.  Legacy Severe Storms Analysis 
Program (SSAP) 
 
The original or legacy Severe Storms 
Analysis Program (SSAP) was the 
NSSL-developed algorithm system that 
included some of the severe weather 
algorithms that are now operational 
within the National Weather Service 
(NWS) suite of WSR-88D algorithms.  
The SSAP components that have been 
integrated into the WSR-88D include the 
Storm-Cell Identification and Tracking 
(SCIT) algorithm, the cell-based Hail 
Detection Algorithm (HDA), and the 
Tornado Detection Algorithm (TDA; 



sans tracking).  One additional 
component of the SSAP, the 
Mesocyclone Detection Algorithm 
(MDA), is presently being engineered 
for the WSR-88D and will be fully 
integrated by the summer of 2004.  A 
fifth SSAP component, the Damaging 
Downburst Prediction and Detection 
Algorithm (DDPDA; Smith et al. 2002), 
has yet to be integrated into the WSR-
88D system.  The version of the TDA in 
the NSSL SSAP also includes tracking 
and trend information, which were 
omitted during WSR-88D integration. 
 
Each of the algorithms, as implemented 
into the WSR-88D system or within the 
NSSL SSAP, operates using only single-
radar data.  In the case of the WSR-88D 
HDA, some limited thermodynamic 
information (height of 0ºC and -20ºC 
levels) from a nearby sounding must be 
manually input into the algorithm.  The 
NSSL SSAP version of the HDA 
integrates near-storm environment 
(NSE) data from the Rapid Update Cycle 
(RUC) mesoscale model analysis so that 
the selection of the HDA 
thermodynamic data is automated and 
has higher temporal and spatial 
resolution than synoptic-scale soundings. 
 
Testing of the SSAP was done in offline 
mode with archived WSR-88D Level II 
data, or in real-time.  Real-time testing 
was conducted using NSSL’s Warning 
Decision Support System (WDSS; Eilts 
et al. 1996) at a variety of United States 
National Weather Service (NWS) 
Forecast Offices (NWSFO) nationwide 
since 1993.  Both of these legacy 
systems, the SSAP and the WDSS, were 

developed as single-radar software 
systems.  All algorithm and radar 
products were keyed to the individual 
volume scans and individual radars. 
 
Even with the limitations of single-
source algorithms and systems, the 
WDSS proved valuable for warning 
improvements.  Many of the then-
experimental NSSL severe weather 
algorithms were integrated into the 
present-day WSR-88D system.  This 
concept continues to be used to test the 
improvements and additions to the 
NSSL severe weather analysis 
applications to be discussed in the 
following sections. 
 
3.  Enhanced Hail Diagnosis 
Algorithm (EHDA) 
 
NSSL has enhanced the original single-
radar cell-based HDA, known as the 
Enhanced Hail Diagnosis Algorithm 
(EHDA; Marzban and Witt 2001).  This 
improved hail diagnosis uses a 
sophisticated and more-accurate Neural 
Network that integrates the traditional 
reflectivity radar information with 
velocity radar information (for rotation 
and storm-top divergence) as well as 
NSE data from a mesoscale model.  
Additional outputs include hail size 
conditional probabilities for three 
categories: <4 cm, 4 – 6 cm, and >6 cm.  
The output data are made available for 
icons, tables, and trends.  An example of 
an EHDA table is shown in Fig. 1.  
NSSL plans to fully integrate the EHDA 
into the MR-SSAP and as gridded hail 
products (see next) during 2004. 

 



 
Figure 1.  Table showing output from NSSL’s Enhanced Hail Diagnosis Algorithm (EHDA).  Rows 
represent individual SCIT-detected storm cells, and columns show hail attributes per cell.  Selected column 
headers include POSH (probability of severe hail), MEHS (maximum expected hail size in inches), S<1.5 
[probability of hail < 1.5” (4 cm) diameter], 1.5-2.5 [probability of hail between 1.5”-2.5” (4 – 6 cm) 
diameter], and S>2.5 [probability of hail > 2.5” (6 cm) diameter]. 
 
 
4.  Multiple-Radar SSAP 
   
The Multiple-Radar Severe Storms 
Analysis Program (MR-SSAP; Stumpf 
et al. 2002) extends the concepts of the 
legacy SSAP into the multiple-radar, 
multiple-sensor realm.  The present 
architecture of each algorithm is to 
detect two-dimensional (2D) features on 
radar elevation scans.  At the end of each 
complete radar volume scan, the 2D 
features are vertically associated to 
create 3D detection products (e.g., storm 
cells, mesocyclones, TVSs).  These 3D 
detections are also time-associated with 
3D detections from a previous volume 
scan to produce tracks and trends.  This 
method leads to a variety of 
disadvantages.  First, algorithm products 
are only generated at the end of a 
volume scan, which is typically 5-6 
minutes after the first elevation scan of 
the volume scan is collected.  This has 
led to warning meteorologists placing 
less weight on the algorithm products for 
warning guidance and more weight on 
analysis of the more-timely radar data 
alone without the additional guidance.  
Second, storm and tornado evolution can 
typically be very rapid, and 5- or 6-
minute algorithm update rates may be 
inadequate.  Third, storms can be poorly 
sampled at very near ranges to the radar 

(cone-of-silence) and at far ranges (radar 
horizon, lower sampling resolution). 
 
An early attempt at a multiple-radar 
SSAP compared the algorithm detections 
from the various single-radar sources 
and determined the “best” radar to use as 
the one sensing the storm or 
mesocyclone/TVS with the strongest 
intensity.  This method, called the 
“County Warning Area (CWA) Table”, 
did not take advantage of combined 
information from multiple radars, and 
thus issues like poor sampling still 
plagued the system.  It also did not 
synchronize for the time difference 
between the multiple radar scans through 
similar features. 
 
The MR-SSAP instead combines the 
two-dimensional information from 
multiple radars and uses these data sets 
to produce 3D detections.  This will 
allow for a more complete vertical 
sampling of storms and 
mesocyclones/TVSs where vertical 
sampling resolution is degraded.  
Signatures are now better sampled where 
adjacent radars are adding data to poorly 
sampled regions such as cones-of-silence 
(Fig. 2).  Multiple radar data are 
mosaicked into “virtual volume” scans 
(Lynn and Lakshman, 2002), with the 



latest elevation scan of data replacing the 
one from a previous volume scan.  This 
method gives a complete volume scan at 
any point in time.  Vertical and time 
association is then performed at regular 
intervals with the last several minutes of 
2D features within a “virtual volume” 
enabling rapid updating of algorithm 
output and time-synchronization of the 
multiple-radar data.  Output products can 
be generated as soon as a new radar 
elevation scan is included in the virtual 
volume (10-20 seconds).  Presently, the 
NSSL system runs the updates at 60-
second intervals for better warning 
management.  The rapidly updating 
virtual volume can also run with single 
radar mode if coverage and outages 
dictate.  The virtual volumes are 
designed to be VCP-independent, and 
can be integrated with other “gap-
filling” radar platforms, including FAA 
(e.g., TDWR) and commercial radars.  
Products are keyed to a four-dimensional 
earth-relative coordinate system 
(latitude, longitude, height above MSL, 
time). 
 
5.  Multiple-Radar SCIT and HDA 
 
Reflectivity information from multiple 
radars is used to detect and diagnose 
storm cells.  Virtual volumes of radar 
data containing the latest information 
from each radar for the previous 5 

minutes are combined to produce 
vertical cores representing storm cells.  
The vertical association technique 
clusters 2D features from each of the 
radars within the 5 minute-window into 
3D storm features (Fig. 3).  Time-to-
space conversion is used to account for 
storm motion for the older 2D features.  
2D feature components can be drifted in 
time and space using a number of 
different advection options, including 
input or mean wind from mesoscale 
model data, actual motion of mature 
storm features, or a combination of both.  
The vertical association technique is 
repeated every 60 seconds using all 2D 
features that are less than 5 minutes old.  
The multi-radar reflectivity data from 
the 2D features used to construct the 3D 
storm cell detections are diagnosed to 
give traditional cell-based attributes such 
as vertically integrated liquid (VIL).  
Cell-based HDA information (POSH, 
hail size) is also diagnosed using the 
combined multiple radar data, as well as 
thermodynamic data from mesoscale 
models (Fig. 4).  The cell-based storm 
and hail diagnoses are executed rapidly 
at 1-minute intervals.  Storm cells are 
also tracked in time (60-second 
intervals), attribute data are available for 
60-second interval trend information, 
and 30-minute forecast positions are 
made (Fig. 5). 

 



 

 
Figure 2.  WDSSII image of WSR-88D Slidell, Louisiana, reflectivity data with horizontal and vertical 
planes as viewed in a three-dimensional “airplane viewpoint” from south of the storm (top).  WSR-88D 
Slidell, Louisiana, horizontal and WSR-88D Mobile, Alabama, vertical reflectivity planes of same data 
from same 3D viewpoint (bottom).  Note that data from Mobile radar are used to fill the Slidell data-void 
cone-of-silence region.  Multiple Radar-SCIT icons are represented by numbered red or yellow squares 
overlaid on radar data. 
 



 
Figure 3.  WDSSII image of WSR-88D Oklahoma City, Oklahoma, 0.5º reflectivity data as viewed from an 
“airplane” angle from the south of the radar, looking down and northwest.  Radar location is in the upper 
right of the image.  Overlaid are centroid locations of Multiple Radar-SCIT 2D features, with the 4-letter 
radar identifier from the originating radar indicated.  Icons are color-coded by maximum reflectivity.  Note 
clustering of 2D features to the southwest of the radar.  This represents a Multiple Radar-SCIT storm cell 
comprised of 2D features from multiple radars. 
 
 

 
Figure 4.  Multiple Radar-SCIT and Multiple Radar-HDA output for same storm in Fig. 2.  Storm Cells are 
represented by numbered red or yellow squares overlaid on radar data (lower left and upper right).  Storm 
cell and hail diagnostic information is presented in the table in the upper left.  60-second rapidly updating 
trend of Multiple Radar-SCIT cell-based VIL is shown at the lower right. 
 
 



 
Figure 5.  Oklahoma City, Oklahoma, WSR-88D data and current Multiple Radar-SCIT storm locations 
(red numbered square icons) and 60-second past positions (white dots and lines).  Note that current storm 
locations are already downstream of latest reflectivity data from Oklahoma City WSR-88D, owing to new 
information from Tulsa, Oklahoma, and Fort Smith, Arkansas, WSR-88D data (not shown). 
 
 
 
6.  Four-Dimensional Multiple-Radar 
Applications 
 
NSSL has developed the capability to 
merge multiple-radar data into four-
dimensional (4D) grids (Zhang et al., 
2001, 2003).  These grids are specified 
in latitude/longitude/height/time 
coordinate systems.  Values in grid cells 
sensed by more than one radar are 
combined using a time and an inverse-
distance weighting scheme.  Terrain 
information is combined with beam 
power-density cross-sections to 
determine the amount of beam blockage.  
The data can be continuously updated 
each time an elevation scan from one of 

the radars is updated (every 10-20 
seconds).  Older radar data in the grid 
can also be advected using the NSSL 
motion estimation algorithm (see later).  
Given ample computational resources, it 
is possible to create 4D radar grids to 
cover a very large region, including the 
Continental U.S.  It is also possible to 
combine radars from different networks 
(WSR-88D, TDWR, commercial radars) 
into multiple-radar grids. 
 
Presently, WSR-88D gridded maps of 
maximum vertical reflectivity 
(sometimes known as “Composite 
Reflectivity”) and Vertically-Integrated 
Liquid (VIL) are presented with poor 



Having radar data on a lat/lon/height 
grid makes it easier to combine with data 
from other sensors, particularly 
environmental data from a mesoscale 
model (e.g., 20 km RUC).  The input of 
thermodynamic data is useful for 
deriving values of reflectivity at constant 
temperature levels (e.g., at the melting 
level of 0ºC) and temperature layers, the 
height of constant reflectivity values 
above certain temperature levels (e.g., 
height of 50 dBZ level above the 0ºC 
level), and the various hail diagnosis 
parameters described in the next section. 

spatial (2 km Cartesian grids) and poor 
temporal (5-min updates) resolution 
(Fig. 6).  Using the rapidly updating 4D 
multiple-radar grids, NSSL has 
developed high-resolution spatial (1x1 
km) and temporal (using virtual volumes 
with 10-20 second updates) versions of 
these popular products (Fig.7).  Other 
products include reflectivity at constant 
heights (“CAPPIs”), maximum 
reflectivity within any layer specified by 
two constant height levels, height of 
maximum reflectivity, maximum heights 
of constant reflectivity values (e.g., 
“Echo Tops”), and VIL Density (VIL 
divided by the depth of integration).  The 
faster updates provided by the virtual 
volumes allows for more rapid access to 
the diagnostic fields, versus access only 
once per single radar volume scan and at 
the end of those volume scans. 

 
The process by which reflectivity data 
from multiple radars is merged can also 
be used to combine other multiple radar 
fields, such as fields of scalar velocity 
derivatives from single radars (e.g., 
azimuthal and radial shear – see later 
section).  

 

 
Figure 6.  High-resolution polar gridded Vertically Integrated Liquid (VIL) on left (1km by 1º, and low-
resolution Cartesian gridded WSR-88D VIL on right (2km by 2km). 
 



 
Figure 7.  Multiple-radar high-resolution gridded Vertically Integrated Liquid (VIL) (roughly 1 by 1 km).  
Data from three radars supplied the grid. 
 
 
7.  Gridded Hail and Hail Swath 
Diagnostic Products 
 
The techniques used to derive popular 
WSR-88D cell-based hail products from 
the HDA have been incorporated into 
high-resolution gridded products similar 
to the high-resolution VIL product.  
Using the Severe Hail Index (SHI; Witt 
et al. 1998), a product similar in concept 
to VIL, but with contributions of higher 
reflectivities above freezing levels 
included, probability of severe hail and 
maximum expected hail size products 
are derived. 
 
This is a different paradigm in hail 
information delivery than is commonly 
used within national U.S. warnings.  

Geo-spatial information on hail 
probability and hail size can be made 
available (versus single values per storm 
cell), which allows a user to diagnose 
which portions of storms contain large 
hail.  Geo-spatial information also has 
the added benefit of improving hail 
warning verification, since the locations 
of the largest hail can be estimated.  The 
gridded hail size data can also be 
accumulated over time to provide 
precise hail swath maps, showing both 
maximum hail size by location, and hail 
damage potential (combination of hail 
size and duration of hail) (Fig. 8).  High 
spatial and temporal resolution grids can 
be extracted from both single radar data 
as well as multiple-radar mosaics.  The 
multiple radar grids have a spatial 



resolution (of roughly 1x1 km2, and high 
temporal resolution using virtual 
volumes with 10-20 second updates 
(Fig.9).  Thermodynamic data is 
integrated from mesoscale numerical 
models, which also offers better 
temporal and spatial resolution than 12 

hourly rawinsonde updates.  Future work 
is planned to adapt the Enhanced-HDA 
to a geo-spatial grid, integrating 
reflectivity, velocity-derived products 
(see next section), and environmental 
thermodynamic and kinematic 
information from mesoscale models. 

 

 
Figure 8.  Oklahoma City, Oklahoma, WSR-88D reflectivity during 3 May 1999 tornado outbreak (upper 
left); High-resolution Gridded Probability of Severe Hail (POSH) field (lower left); Hail size swath field 
(upper right), Hail Damage Potential Accumulation field (lower right).  Overlaid thin white lines are the 
actual tornado track locations obtained from NWS damage survey. 
 



 
Figure 9.  Multiple-radar high-resolution gridded Maximum Expected Hail Size (MESH)(roughly 1 by 1 
km).  Data from three radars supplied the grid. 
 
 
8.  Storm-Scale Vortex Detection and 
Diagnosis 
 
More sophisticated techniques are being 
developed to accurately detect and 
diagnose storm-scale rotation in radar 
velocity data.  Present techniques (TDA, 
MDA) search for patterns of vertically 
correlated azimuthal shear in single-
Doppler velocity data (Mitchell et al. 
1998; Stumpf et al. 1998).  Current 
research has shown that these azimuthal 
shear techniques are worse at estimating 
vortex location, size, and strength than 
techniques that employ velocity 
derivatives of rotation and divergence.  
Traditional azimuthal shear techniques 
can also produce false detections along 
non-rotation signatures.  Radial velocity 
values are a factor of single-radar 
viewing angles (one component of 
velocity is measured – that along the 

radar beam).  Also, the traditional 
algorithms are heuristic (use pre-defined 
thresholds and rule bases) and are 
centroid based, which can lead to much 
instability when combining data across 
elevation and volume scans (in the 
vertical and across time). 
 
Using a Linear Least Squares Derivative 
(LLSD) technique described by Elmore 
et al. (1994) and adapted by Smith et al. 
(2003), derivatives for azimuthal shear 
and divergence are produced in gridded 
form.  These scalar velocity derivatives 
are much less dependent on radar 
viewing angle, which allows for the 
combination of gridded shear derivative 
fields from multiple radars.  Gridded 
azimuthal shear derivative fields from 
single and multiple radars can also be 
accumulated over time and within 
specific height layers (e.g., 0-4 km 



AGL), providing a proxy for “rotation 
tracks” of mesocyclone features (Fig. 
10).  The information in these “rotation 
tracks” is simply a diagnostic of the 
velocity data, and does not suffer from 
the instabilities inherent to heuristic and 
centroid-based methods.  Within one 
“rotation track” image is information 
about the past track of the events (which 
can be used to nowcast the future 
position) as well as the trend of the 
strength of the rotation in those events.  
Also, the rotation track product can 
serve as a very valuable verification tool 
to help determine where unreported or 
unobserved tornadoes may have 
occurred.   One image such as Figure 10 

can replace the time-consuming process 
of replaying radar data and manually 
tracking individual mesocyclones, and 
can be used to help deploy damage 
survey teams.   
 
Both the LLSD azimuthal shear and 
divergence fields can be combined to 
compute a true rotation field.  
Combining LLSD rotation fields from 
multiple radars and three-dimensionally 
in the vertical can be used to depict the 
vertical “tube” of the mesocyclones (Fig. 
11).  These 3D rotation fields will be 
used as the basis for a new Vortex 
Detection and Diagnosis Algorithm 
(VDDA) to replace the MDA and TDA. 

 

 
Figure 10.  Six-hour gridded accumulated LLSD azimuthal shear derivative field for the 3 May 1999 
tornado outbreak in Central Oklahoma.  Overlaid thin white lines are the actual tornado track locations 
obtained from NWS damage survey. 
 
 



 
Figure 11.  Three-dimensional image of an isosurface of rotation in a supercell storm (lavender represents 
vertical vorticity exceeding 10-2 s-1). 
 
 
9.  Motion Estimation 
 
NSSL is currently developing a 
sophisticated technique to forecast the 
motion, growth, and decay of two-
dimensional storm fields (Lakshmanan 
2003).  This is not a cell tracker, but 
rather a forecast of 2D radar or satellite 
fields.  Present cell-tracking algorithms 
(e.g., SCIT) rely on heuristic rule bases 
and centroid tracking schemes, which 
can cause a number of tacking 
instabilities.  The motion estimation 
application begins with a statistical 
clustering technique that can segregate 
multiple scales of reflectivity features, 
which are hierarchical in nature (larger 
clusters contain smaller clusters, and so 
on). These clusters are tracked 
independently with greater stability than 
the centroid based algorithms.  The 
product also contains a storm growth and 
decay component.  Time histories of 

tracked cluster can then be diagnosed for 
trend information. 
 
Up to 60-minute forecasts of these two-
dimensional products can be produced 
(Fig. 12).  The technique also produces a 
high-resolution motion field that can be 
used to advect any two-dimensional 
product, such as precipitation 
accumulation, VIL, hail, rotation, or 
lightning fields to provide up to 60-
minute forecasts of these phenomena.  
The high-resolution motion estimates are 
also used within the 4D multiple-radar 
grids to advect the slightly older data (up 
to 10 minutes old) forward in time.  
Coupled with the virtual volume rapid 
updating, this has the added benefit of 
removing the “strobing” effect 
commonly observed in precipitation 
accumulation maps due to the discrete 
volume scan sampling intervals (every 5 
or 6 minutes). 

 



 

  

  
Figure 12.  Reflectivity forecasts from the WDSS-II Motion Estimation algorithm, and verification using 
actual data.  Current reflectivity field (top left), 30 minute forecast (middle left), 30 minute verification 
(middle right), 60 minute forecast (bottom left), and 60 minute verification (bottom right). 
 
 
10.  Quality Control Neural Network 
(QCNN) 
 
Radar reflectivity fields are comprised of 
meteorological echo and data artifacts 
such as ground clutter, anomalous 
propagation (AP), and chaff.  Most 
severe weather applications depend on 
pristine data to properly detect and 
diagnose phenomenon, so these artifacts 
need to be identified and removed prior 

to processing.  Also, many applications 
require that other meteorological returns 
not associated with precipitation (e.g., 
clear air blooms) be removed. 
 
NSSL has developed a Quality Control 
Neural Network (QCNN; Lakshmanan et 
al. 2003) designed to look at properties 
of the three moments of radar data 
(reflectivity, radial velocity, spectrum 
width) as well as multi-sensor “cloud 



cover” data (combined IR satellite and 
surface temperatures) to segregate 
precipitation from non-precipitation (and 
data artifact) echo.  This is used as a 
preprocessor to certain severe weather 
applications, such as mesocyclone and 
TVS detection and quantitative 
precipitation estimation.  The QCNN has 
been shown to improve upon current 
techniques such as the Radar Echo 
Classifier (REC; Kessinger et al. 2003).  
Shown below is an example of a 
reflectivity field before (Fig 13a) and 
after removal (Fig 13b) of non-

precipitation echo with overlaid 
mesocyclone detection centroids.  The 
velocity dealiasing process is frequently 
problematic in areas of clear air bloom 
or AP, and this can lead false detections 
of mesocyclones.  This is commonly 
observed when diagnosing mesocyclone 
climatologies over long-term testing 
(which mostly includes periods without 
precipitation).  By segregating the 
precipitation areas, the false 
mesocyclone detections are removed 
(Fig 13b) without impacting the true 
detections within precipitation areas. 

 

 
 

 
Figure 13.  a) (top) Original reflectivity field of a squall line case with clear air, AP, and clutter returns 
near the radar.  Overlaid circles are mesocyclone detections.  B) (bottom) Reflectivity field and overlaid 
mesocyclone detections after QCNN removed non-precipitation echo.  Data are from KFWS (Fort Worth 
TX) 20 Apr 1995 05:36 UTC. 



11.  Near-Storm Environment (NSE) 
Algorithm  
 
NSSL has developed an algorithm that 
analyzes mesoscale numerical model 
output and derives a large number of 
sounding parameters.  These derived 
gridded data are used as source input to a 
number of our current and proposed 
algorithms.  The model initial analysis 
fields are used to provide greater 
temporal and spatial resolution of 
important environmental data for the 
multiple-sensor applications.  For 
example, rapidly updating 
thermodynamic data (heights of 0C and 
–20C levels) are input into the cell-based 
and grid-based hail diagnosis algorithms.  
The rapidly updating information can be 
used to capture rapidly evolving 
thermodynamic fields or fields with 
large spatial gradients much better than 
rawinsonde information. 
 
12.  R&D Application Development 
Environment using WDSSII 
 
The Warning Decision Support System - 
Integrated Information (WDSS-II; Hondl 
2002, Lakshman 2002) greatly 
facilitated the research and development 
process of these new applications.   The 
WDSS-II is the result of over 10 years of 
research, application development, and 
operational testing at NSSL and NWS 
forecast offices.  WDSS-II is a capable 
real-time data ingest and processing 
system that can be used to evaluate 
experimental applications in an 
operational setting.  It is also a powerful 
application development tool.  It is easy 
to add new products and concepts, and it 
provides a seamless path from data 
ingest, data processing, and output using 
standard formats.  This should improve 
the pace of science and technology 

infusion into operational warning 
decision systems. 
 
The WDSS-II components include 1) 
data ingest of data from multiple radars 
and sensors (in archive mode or in real-
time), 2) detection, diagnosis, and 
prediction multi-sensor algorithms, 3) an 
interactive display designed specifically 
to effectively manage and provide rapid 
access to the most important information 
for decision-making (including novel 4D 
earth-relative base-data visualization 
techniques), and 4) an infrastructure to 
support application development, data 
ingest and distribution, configuration, 
and extensible output data formats. 
 
The WDSSII has been developed using 
economical Linux systems and uses an 
object-oriented design with a library of 
functions and classes for real-time (or 
archived) multiple-source data input, 
manipulation, and output.  The WDSSII 
integrates data from a variety of sources 
(multiple radars, satellites, mesoscale 
models, lightning) and converts all the 
data to a common coordinate system (3D 
earth-relative and time-synchronized).  
The object-oriented structure of the code 
also facilitates the development of 
functions that can be reused using other 
data sources (such as other radars 
besides WSR-88D, including FAA and 
commercial “gap-filling” radars).  The 
computing structure is distributed, and 
can be threaded across multiple 
processors depending on the amount of 
data and number of applications. The 
system uses standard output formats 
(NetCDF for gridded data; XML for 
graphics, tables, and trends; shapefiles 
for geo-located graphics) for use in a 
variety of display technologies (e.g., 
AWIPS, OpenGL, Java, Web-based), 
where output data can be customized on 



the fly.  Application development is 
facilitated by the use of contemporary 
software development tools [e.g., 
Concurrent Versions System (CVS) 
software repository; auto-generated 
Doxygen object class documentation]. 
 
13.  Conclusion and Future Work 
 
The pace of this innovative development 
would not have been possible without 
WDSSII as an effective research and 
development tool and testing platform.  
Many of the ideas for these applications 
were considered many years prior to the 
development of the WDSSII, and are 
now coming to fruition at NSSL.  There 
are many more concepts that have yet to 
be implemented, including some 
suggestions made by NWSFO 
forecasters after exposure to the 
applications in actual warning 
operations.  This represents a quantum 
leap in the improvement of warning and 
situational awareness technology. 
 
These new multiple-sensor applications 
represent only the first phase of 
improvements for the NSSL 
experimental severe weather 
applications.  NSSL plans to expand the 
use of input from other sensors into the 
algorithms (including mesoscale model, 
lightning, surface, and satellite data) for 
a full three-dimensional multiple-sensor 
suite of severe weather applications.  An 
upgrade to our application and display 
systems will continue to be tested during 
2004 at several U.S. NWSFO and 
international testbeds.  The results of 
these tests will lead toward eventual 
improvement of the severe weather 
applications for warning services and 
systems nationally and worldwide. 
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