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1. Introduction 
 
The National Severe Storms Laboratory 
(NSSL) Storm Identification and 
Tracking Algorithm (SCIT; Johnson et 
al 1998) was implemented into the 
WSR-88D system and has been in 
operational use for about six years.  
During this time, it has become apparent 
that the algorithm faces shortcomings in 
its time association abilities.  Most of 
these problems can be traced back into 
the horizontal and vertical association 
techniques in the algorithm, and are 
basically inherent in any algorithm 
which uses heuristic rules and centroid 
to centroid associations.  A study has 
shown that given approximately 100 
storm events ranging from 10-60 minute 
lifetimes, and from 5 locations 
nationwide, the present time association 
technique did not work about 25% of the 
time (Witt and McCot 2002).  In other 
words, for a given storm event, for one 
out of every four volume scans, the 
storm ID is reassigned and all time-
trends are restarted. 
 
The NSSL partnered with the NEXRAD 
Radar Operations Center (ROC) to study 
various methods to improve SCIT time 

association.  The first attempt to improve 
the algorithm included modifying source 
code to some of the heuristic rules in the 
vertical association technique (the 
“vertical-merge technique”; Witt and 
McCoy 2002).  This improved the time 
association success rate to 84%.  
However, a less-costly alternative is 
subsequently tested and is reported here.  
 
Many WSR-88D algorithms, including 
the SCIT algorithm, operate using native 
polar radar data.  For the reflectivity 
moment, the resolution is 1º in azimuth 
and 1 km in range.  The spatial 
resolution of polar data decreases with 
increasing range due to broadening of 
the beam.  At near ranges, single storm 
cells can be represented by many 
reflectivity peaks, each being potential 
candidates for storm cell detection (Fig. 
1).  At far ranges, this problem is 
reduced. 
 
We developed an initial “scale filter” 
technique that is designed to smooth out 
the fine-resolution reflectivity peaks at 
close ranges to the radar while retaining 
the peaks at farther ranges.  The purpose 
of the filter is to reduce the number of 
reflectivity peaks in storms at near-
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range.  Figure 2 shows an example of the 
same data in Figure 1 with the scale 
filter applied.  The single supercell storm 
nearest the radar was incorrectly 
characterized by 4 separate cell 

detections prior to the filter technique.  
The filtering removed the additional 
reflectivity peaks and resulted in only 
one storm cell detection. 

 
Figure 1.  Original (unfiltered) reflectivity field.  Overlaid are SCIT cell detections based 
on using the unfiltered field. 
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Figure 2.  Reflectivity field with the scale filtering applied.  Overlaid are SCIT cell 
detections based on using the scale filtered field. 
 

 
 
 
 
 
 
 
 
One limitation of the filtering process is 
that reflectivity amplitudes are damped, 
especially at near ranges.  This has two 
undesired effects.  First, small and 
isolated (but valid) cells can be “filtered 
away”, such that their size and intensity 
no longer meet the thresholds used to 
define cell detections.  The second effect 
causes diagnosed strength attributes of 
the cell detections such as maximum 

reflectivity and Vertically Integrated 
Liquid (VIL) to be reduced. 
 
 
2. Data 
 
The same data sets used to test the 
“vertical-merge technique” are used to 
test the filter technique.  Storms cells 
were identified from 5 different events 
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collected nationwide.  These events 
represent a variety of storm types, 
including supercells, multi-cell clusters 
with light steering winds, hurricane outer 
rain bands, and squall lines, and are 

listed in Table 1.  The data were derived 
from Level-II base radar data, and 
processed using the NSSL Warning 
Decision Support System – Integrated 
Information (WDSSII; Hondl 2003). 

 
 
Table 1.  List of storm events, locations, dates, and number of cells used in the analyses. 
 
  Storm 
Site Radar ID Type Date # Volume Scans # of Cells 
Norman, OK KTLX supercells 050399 29 4 
Eglin AFB KEVX hurricane bands 100495 15  15 
Phoenix, AZ KIWA multicell 081596 18  31 
St. Louis, MO KLSX squall line 041594 16  35 
Detroit, MI KDTX supercells 062296 20  10 
TOTAL    98  95 
 
 
 
3. Method 
 
The technique uses a simple range-
adjusting kernel such that more data 
points are smoothed at closer ranges to 
the radar.  The kernel is centered on each 
data bin and its size is held “constant”, 
so the number of azimuth bins within the 
kernel increases with decreasing range.  
The number of range bins within the 
kernel always remains constant with 
range.  Figure 3 shows an example of a 7 
km kernel at two different ranges.  At 
the near range (on the right), 7 km 
represents an azimuthal extent of 24 
degrees (24 radials), and thus 168 data 
values are used to compute the filtered 
value at the kernel’s center.  At the 
farther range (on the left), 7km 
represents an azimuthal extent of only 8 
radials, and only 56 data values are used 
to compute the filtered value.  Data 
values contained within each kernel are 
then sorted, and the value representing 
some point along the distribution of 
values in the bin is used to represent the 
new data value representing the kernel’s 

center bin.  Both the kernel size (e.g., 
5km, 7km, etc.) and distribution 
percentage [i.e., 50% (median), 80%, 
etc.] are adaptable.  A functional 
description of the source code is 
included in Appendix A. 
 
The first task was to optimize the filter 
parameters that give best time 
association with least impact to number 
of detections.  With the optimal set of 
parameters, the next step is to mitigate 
any reflectivity amplitude damping 
caused by the filtering technique.  The 
first mitigation technique involves the 
development of a range-dependent bias 
correction applied to the filtered data.  If 
that technique proves unsuccessful, then 
a second mitigation technique will be 
tested.  That technique involves using 
the filtered data for cell detection, and 
the original unfiltered data for cell 
diagnosis.  These techniques will all be 
compared to the “vertical merge” 
technique developed and tested by Witt 
and McCoy (2002). 
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Figure 3.  Filter kernels (white boxes with cross-hairs) for near range (on right) and far 
range (on left).  Comparison of two kernels is provided in the text. 
 

 
 
 
4. Results 
 
a. Optimization of filter parameters 
 
The first task was to run the scale filter 
with a nine different combinations of 
filter parameters to determine the 
optimal parameter that maximizes time 
association success rate 
 
POD = [ # TA success / (#TA success + 
#TA failures) ]                                     (1) 
 
A time association success was defined 
as a correct time association between 
matched cell detections on two 
consecutive volume scans (the cell ID 
remains unchanged across the two 
volume scans).  A time association 
failure was defined as a missed time 

association between matched detections 
on two consecutive volume scans (the 
cell ID changes across two volume 
scans).  Correct cell matching was 
determined using human-truthed cell 
matching across volume scans.  Where 
there were gaps in the radar data that 
were larger than one volume scan (> 6 
minutes), or when storm cells were not 
detected, time association could not be 
preformed and thus was not expected.  
Thus, these gaps are not considered as 
time association failures. 
 
The nine parameter combinations 
included following values:  Kernel size 
of 5km, 7km and 9km; distribution 
percentage of 50% (median filter), 70%, 
and 90%.  The results of the nine runs, 
plus results using no filters and the 
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results using the vertical merge 
technique are shown in Table 2. 
 
The various filter parameters made little 
variation in the time association success 
rate, as shown in the table below.  The 
70% distribution and 7 km kernel size 

had the greatest success.  In every case, 
the success rate continued to greatly 
outperform both the baseline SCIT (no 
filter) and the vertical merge technique 
developed and tested by Witt and 
McCoy (2002). 

 
 
Table 2.  Time association success rates (Eq. 1) for the nine combinations of scale filter 
parameters, the baseline SCIT (unfiltered data) and the vertical merge technique. 
 
Distribution (%) 50 50 50 70 70 70 90 90 90 Baseline Vertical
Kernel Size (km) 5 7 9 5 7 9 5 7 9 (no filter) Merge 
TA Success Rate 93.9 96 95.4 95.3 97.1 95.9 95.4 96.6 93.2 77.2 83.9
 
 
 
 
b. Reduction in small and isolated 
cell detections due to amplitude damping 
 
An unwanted side-effect of the 
amplitude damping is the reduction of  
small and isolated (but valid) cells which 
can be “filtered away”, such that their 
size and intensity no longer meet the 
thresholds used to define cell detections.  
Originally, we were to determine the 
number of cells deleted by this effect.  
Multiple detections of the same cell are 
intended to be removed by this process, 
so they were not included in the 
statistics. 
 
The scope of the analysis was broadened 
since more analysis beside just weak and 
small cells was needed.  Differences in 
the kernel size result in minor 
differences in the number of detected 
cells.   Besides looking at just small and 
isolated cells, all "distinct" cells were 
included, even if there was some 
"contact" with another cell.  
Additionally, many new detections that 
occurred as a result of the various filters, 

including false detections (caused 
mainly by residual ground clutter), were 
considered. 
 
For each of the 9 filters (in each section), 
the number of cells (either deleted or 
added, relative to the no-filter run), the 
average maximum reflectivity and VIL 
for all the cells, and the number of cells 
having non-zero Probability of Severe 
Hail (POSH; Witt et al 1998) values are 
shown in Table 3.  The results indicate 
that the distribution percentage value is 
more dominant than the kernel size.  
And, as would be expected, the lower 
the distribution percentage value 
(corresponding to more smoothing), the 
greater the number of cell deletions.  
Increasing kernel size also leads to more 
cell deletions.  The reverse generally 
applies to the new detections, valid or 
false, although there's less of an effect 
from the kernel size. 
 
As for the character of the cells being 
added or deleted, there's not much 
difference in the average maximum 
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reflectivity and VIL for the deletions, 
whereas for valid additions, the 70% and 
90% distribution percentage filters had 
lower values than the 50% filters, due to 
detecting more very weak cells. 
 
To get a measure of whether or not any 
of these cells were really significant, we 
kept track of the number of cells with 
non-zero POSH.  There were several of 
these among the deletions, but none 
among the valid additions.  Although 
some of these cells with non-zero POSH 
were relatively small in size, others were 
quite large, including all the non-zero 
POSH cells.  For these large cells that 
were not detected, it is likely that the 
smoothing of the reflectivity field 
resulted in 2D components whose 
centroids were outside of the search 
radius for 3D association. 
 

Lastly, concerning the false detections, 
these came from three sources:  residual 
ground clutter (all from the KIWA case), 
2nd-trip high-dBZ ring (on the KLSX 
4/15/94 case), and a few instances of 
reflectivity peaks in the anvil of an 
MCS. 
 
We recommend avoiding using any of 
the 90% filters, due to the large number 
of added false detections.  The 70% 
filters offer a "middle-of-the-road" 
approach.  The 50% filters have the 
advantage of little or no false detections, 
and the additional valid detections don't 
include very weak cells (i.e., cells that 
are not operationally relevant). 
 
Therefore, based on these findings, we 
recommended using the 50% distribution 
percentage and 7 km filter parameters. 

 
 
 
Table 3.   For each of the 9 filter parameter combinations, the number of cells deleted 
(top), the number of valid cells added (middle) and the number of false cells added 
(bottom).  Included are the average reflectivity (dBZ) and VIL, and the number of cells 
meeting non-zero POSH thresholds. 
 
Cells 
Deleted           
            
  # of Average Average POSH POSH 
Filter cells dBZ VIL 10-40% 50+% 
            
50-5 120 42.2 5.2 2 1 
50-7 140 41.6 4 0 0 
50-9 179 41.7 4.3 1 0 
70-5 30 41.8 4.6 0 0 
70-7 54 42.2 4.9 0 0 
70-9 78 41.6 4.4 0 0 
90-5 15 41 3.6 0 0 
90-7 24 43.2 5.8 0 0 
90-9 37 43.2 5.9 0 0 
      
      



Valid Cells Added     
      
 # of Average Average POSH POSH 
Filter cells dBZ VIL 10-40% 50+% 
      
50-5 10 41.8 5.8 0 0 
50-7 35 43.4 7.1 0 0 
50-9 30 44.5 8.1 0 0 
70-5 48 38.1 2.4 0 0 
70-7 36 39.6 3.1 0 0 
70-9 61 40.8 4.4 0 0 
90-5 185 38.6 2.6 0 0 
90-7 158 39 2.8 0 0 
90-9 141 39 2.8 0 0 
      
      
False Cells Added     
      
  # of Average Average POSH POSH 
Filter cells dBZ VIL 10-40% 50+% 
            
50-5 1 38 1 0 0 
50-7 0         
50-9 0         
70-5 8 41.8 1.1 0 0 
70-7 5 42.6 1.2 0 0 
70-9 3 41 1.3 0 0 
90-5 51 46.3 1.4 1 0 
90-7 54 45.9 1.2 1 0 
90-9 46 45.3 1.1 0 0 

 
 
 
 
c. Range-dependent bias correction 
to adjust for amplitude damping 
 
To address the second effect of the 
amplitude damping, a range-dependent 
bias correction 
 
Bias = value of unfiltered data –  
                 value of filtered data          (2) 
 
was calculated and tested to recover the 
damped values.  We chose to use a bias 
correction versus a ratio percent 
correction, because dBZ is measured on 

an open-ended log scale (- infinity to + 
infinity).  In order to use a percent 
correction, dBZ would have to be 
converted back to Z, the ratios computed 
and corrected, and Z converted back to 
dBZ. 
 
Instead of doing filtered versus non-
filtered reflectivity comparisons using 
2D features as originally planned, we 
chose to use the actual polar gridded 
data for each elevation angle.  The latter 
data are much less sparse, and should 
give better range-dependent statistics on 
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the amplitude damping of reflectivity 
due to the filter process. 
 
The entire 5 case data set was run and a 
statistical analysis comparing each 
sample volume from each elevation scan 
between the filtered (using the 50% and 
7 km thresholds) and unfiltered data was 
performed.  The biases (Eq. 2) of every 
sample volume whose original 

reflectivity was 30 dBZ or greater were 
recorded.  Figure 4 depicts the upper 
quartile (75th percentage) of the bias for 
each set of sample volumes divided into 
5 km range bins (e.g., all samples from 
0-5 km, 5-10 km, 10-15 km, etc.).  As 
expected, the bias is always positive 
(unfiltered data have higher reflectivities 
than filtered data), and the bias decreases 
with increasing range. 

 
 
Figure 4.  Reflectivity bias correction as a function of range, as determined from the 
upper quartile (75th percentage; cyan curve) of the bias (unfiltered dBZ minus filtered 
dBZ) for 5 km range bins.  Also shown are the median (50th percentage; purple) and the 
lower quartile (25th percentage; orange). 
 

Bias Correction

-2

-1

0

1

2

3

4

5

6

7

8

5 20 35 50 65 80 95 11
0

12
5

14
0

15
5

17
0

18
5

20
0

21
5

23
0

Range (km)

R
ef

le
ct

iv
ity

 (d
BZ

)

UQ
median
LQ

 
 
The upper quartile information (cyan 
curve in Figure 4) was used to develop a 
range-dependent bias correction 
function.  The range-dependent bias 
curve was slightly smoothed and applied 
to the data filtered using the 50% and 7 
km parameters.  All 5 cases were run 
using the bias-corrected filtered data.  
The time association success rate (Eq. 1) 

recomputed from the bias-corrected runs 
was 93.0%.  This is a slight reduction 
from the non-corrected filtered data 
(96.0%). 
 
The VIL trends for the bias-corrected 
runs were also tabulated.  Shown in 
Figure 5 as the average VILs as a 
function of range (10 km range 
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increments) for all of the storm cells in 
the 5 cases combined.  Included in 
Figure 5 are the values as determined 
from truth (human-interpreted cells, 
reflectivities, and calculated VILs), the 
baseline SCIT (unfiltered data), the 
vertical merge technique, the filtered 
data without bias correction, and the 
bias-corrected filtered data.  In Figure 6, 

the percent difference (average ratios) 
from truth of the three runs (no filter, 
filter, and filter with bias correction) is 
also shown as a function of range.  Note 
that the filter run without bias correction 
shows a smaller ratio at closer ranges.  
The average ratios for all ranges, all 
cases, and each of the three runs are 
shown in Table 4. 

 
 
Figure 5.  Average VIL as a function of Range (km) for “truth” data (magenta), baseline 
unfiltered data (yellow), vertical merge (blue), filtered data (cyan), and bias-corrected 
filtered data (purple). 
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Figure 6.  Percent difference (average ratios) from truth of the three runs (no filter, filter, 
and filter with bias correction) as a function of range.  Baseline unfiltered data (yellow), 
vertical merge (blue), filtered data (cyan), and bias-corrected filtered data (purple). 
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Table 4.  Average ratios of VIL values between “truth” and each of 3 different SCIT runs 
(reflectivity with no filter, filter, and bias-corrected filter).  Also, average ratios of VIL 
values between “baseline” and the 2 filtered SCIT runs 
 
Reflectivity data Average ratio from truth Average ratio from baseline 
Baseline (no filter) .864  - 
Vertical Merge .908 1.049 
Filter .672 .777 
Bias-Corrected Filter .796 .920 
 
 
Since the average ratios were only 
79.6% of truthed values, and only 92.0% 
of baseline values, we recommend that 
the original (unfiltered) reflectivity data 
are used for cell diagnosis, and the 
filtered data (with the 50% and 7 km 
parameters) is only used for cell 
detection. 
 
Note that the vertical merge technique 
developed shows the best average VIL 

ratio from truth and improves upon the 
baseline.  Recall from Table 2 that the 
time association success rate for the 
vertical merge technique is inferior to 
the filter techniques.  Implications of 
these results will be discussed later. 
 
Since the reflectivity bias correction was 
not deemed acceptable, and in the 
interest of time, the reduction in the 
number of detected small and isolated 
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(but valid) cells caused by the reduction 
of the maximum dBZ below SCIT 
algorithm thresholds was not 
determined. 
 
 
d. Use of original (unfiltered) 
reflectivity for diagnosis 
 
The SCIT code was modified such that 
the filtered data are used for the 
detection of cells, and the original 
unfiltered data is used for cell diagnosis.  
The method is to determine the 
azimuthal and range extent of each 2D 
SCIT feature (on each elevation scan), 
and using the data from the original 
(unfiltered) reflectivity field, determine 
the maximum three-gate running average 
reflectivity of all data points within the 
2D feature extent.  These maximum 
reflectivity values are then used to 
calculate VIL, SHI, and other storm 
diagnostic parameters. 
 
Because cell diagnostic information is 
used in the vertical and time association 
schemes (cell components are sorted by 

strength prior to association), there 
should be some differences in the overall 
time associations.  The time association 
success rate (Eq. 1), recomputed 94.1%.  
This is a slight reduction from the non-
corrected filtered data (96.0%) and a 
slight improvement from the bias-
corrected filtered data (93.0%).  Overall, 
this TA success rate is still quite higher 
than the baseline and vertical merge 
rates (Table 2). 
 
The VIL trends for the final run were 
tabulated.  Figures 7 and 8 repeat 
Figures 5 and 6, respectively, with the 
exclusion of the filter and bias-corrected 
filter runs, and the inclusion of the VIL 
ratios for the final run.  Figure 9 is 
included to show the VIL ratios as 
percent difference of all four options 
from the baseline SCIT as a function of 
range.  Again, note the range differences 
on the filter case without the bias 
correction, and how the final option is an 
improvement two the first two filter 
options at almost every range.  Also, 
Table 5 repeats Table 4 wit the addition 
of the final run statistics.

 
 

 12



Figure 7.  Average VIL as a function of Range (km) for “truth” data (magenta), baseline 
unfiltered data (yellow), vertical merge (blue), and the final run using filtered data for 
detection and unfiltered data for diagnosis (red). 
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Figure 8.  Percent difference (average ratios) from truth of the three runs (no filter, filter, 
and filter with bias correction) as a function of range.  Baseline unfiltered data (yellow), 
vertical merge (blue), and the final run using filtered data for detection and unfiltered 
data for diagnosis (red). 
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Figure 9.  Percent difference (average ratios) from baseline of the three runs (no filter, 
filter, and filter with bias correction) as a function of range.  Baseline unfiltered data 
(yellow), vertical merge (blue), filtered data (cyan), bias-corrected filtered data (purple), 
and the final run using filtered data for detection and unfiltered data for diagnosis (red). 
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Table 5.  Average ratios of VIL values between “truth” and each of 4 different SCIT runs 
(reflectivity with no filter, filter, and bias-corrected filter, filter for detection and no filter 
for diagnosis).  Also, average ratios of VIL values between “baseline” and the 2 filtered 
SCIT runs 
 
Reflectivity data Average ratio from truth Average ratio from baseline 
Baseline (no filter) .864  - 
Vertical Merge .908 1.049 
Filter .672 .777 
Bias-Corrected Filter .796 .920 
Filter Detection/ .845 .976 
   No Filter Diagnosis 
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The average VIL ratio for the final run 
was 84.5% of truth value.  The average 
VIL ratio was 97.6% of the baseline 
SCIT value. 
 
Note that the vertical merge technique 
developed still shows the best average 
VIL ratio from truth and the baseline as 
compared to each of the filter 
techniques.  Recall from Table 2 that the 
time association success rate for the 
vertical merge technique is inferior to all 
of the filter techniques.  Again, the 
implications of these results will be 
discussed later. 
 
In the interest of time, the reduction in 
the number of detected small and 
isolated (but valid) cells caused by the 
reduction of the maximum dBZ below 
SCIT algorithm thresholds was not 
determined.  It is assumed that the 
results would not differ much from those 

of the filter run for the 50% and 7 km 
filter parameters. 
 
 
5. Summary and recommend-
ation for operational systems 
 
The final option, using the filtered data 
for cell detection, and reverting back to 
the original unfiltered data for storm 
diagnosis, was quite successful.  Figure 
10 shows the final results of the original 
SCIT, the vertical merge technique 
tested prior to FY03, and the final filter 
option.  The time association success 
rate was improved from 77.2% for the 
baseline SCIT using unfiltered data to 
94.1% using the final technique.  
Furthermore, the average VIL values 
between the final technique and the 
baseline SCIT was nearly the same (only 
a 2.4% reduction). 

 
 
Figure 10.  Comparison of time association success rate (Eq. 1), and average VIL ratios 
from the baseline (unfiltered SCIT) and truth for the baseline SCIT (blue), vertical merge 
technique (red) and the final filter option (yellow). 
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Considering that the vertical merge 
technique shows the best average VIL 
ratios as compared to truth, one 
recommendation for future work is be to 
combine the final filter technique with 
the vertical merge technique to 
maximize both time association success 
rate and to improve upon the VIL ratios 
as compared to truth.  This option would 
be more expensive to implement, 
because it would involve numerous 
coding changes. 
 
We recommended that this final 
technique, using the filtered data for 
detection, and the original unfiltered data 
for diagnosis, be implemented into the 
WSR-88D operational system as soon as 
possible.  The new technique requires 
minimal coding changes with a large 
improvement in time association.  For 
the baseline SCIT, storm tracks will be 
broken on average once every four 
volume scans (15-20 minutes).  With the 
recommended technique, storm tracks 
should last on average over 9 volume 
scans, which is typically longer than the 
average storm lifetime. 
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