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1. INTRODUCTION

A primary goal of climate change research is to under-
stand variations in the frequency and intensity of severe
weather events on decadal and longer time-scales. An
obvious prerequisite for achieving this goal is an accu-
rate baseline estimate of the frequency and intensity of
severe weather over the last century. Analyses of long-
term changes in extra-tropical cyclone frequency and in-
tensity have been hampered by the inadequacy of cur-
rent datasets (IPCC 2001, p. 163). Since synoptic-scale
weather systems have time-scales of less than a week,
a century-long dataset of tropospheric circulation fields at
daily resolution is required. The NCEP-NCAR 50-year re-
analysis (Kistler and Coauthors 2001) provides four times
daily gridded circulation fields beginning in 1948, when
digital upper-air observations were widely available. The
only daily tropospheric circulation dataset available that
extends back before 1948 is derived from charts of sea-
level pressure hand-drawn by U.S. Air Force meteorolo-
gists in the 1940’s and 1950’s (United States Weather Bu-
reau 1944). Although a remarkable achievement for its
time, this original reanalysis suffers from serious problems
associated with incorrect assumptions made by the ana-
lysts in data sparse regions (Jones 1987; Trenberth and
Paolino 1980) and does not provide estimates of the full
three-dimensional tropospheric structure. Clearly, a bet-
ter dataset is needed - but is it possible to create a more
accurate daily tropospheric circulation dataset for the first
half of the 20th century given the paucity of available ob-
servations?

In this study we examine whether advanced data assim-
ilation systems have significant advantages over currently
available systems for sparse networks of surface pressure
observations representative of the early part of the 20th
century. Specifically, we examine the performance of the
ensemble-based data assimilation system described by
Whitaker and Hamill (2002) applied to a simulated 1915
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observing network, created by sub-sampling the surface
pressure observations for 2001. We focus on surface pres-
sure observations since they are the most widely available
and reliable observations in the early 20th century, and
provide more information about the state of the free tropo-
sphere than surface wind and temperature observations.
In a companion report we will carefully examine the avail-
able data record for the last 150 years and assess the per-
formance of several analysis schemes with surface-only
observation networks representative of 1890 to 1940.

Previous studies using idealized ensemble data assimi-
lation systems (e.g. Hamill and Snyder 2000) have shown
that their flow-dependent background-error covariances
are most beneficial when the observing network is sparse.
When observations are very dense, the background-error
covariances do not change as much from time to time,
so static background-error covariance models (such as
used in 3DVar) can be nearly as effective. In addi-
tion, the computational cost of computing analysis incre-
ments in recently proposed ensemble-data assimilation al-
gorithms (Houtekamer and Mitchell 2001; Whitaker and
Hamill 2002) is directly proportional to the number of ob-
servations being assimilated. Therefore, ensemble-based
data assimilation should be more computationally feasible
and provide the greatest benefit over current operational
schemes in situations when observations are sparse. Re-
analysis before the radiosonde era is just such a situation.

The paper is organized as follows: section 2 contains
a description of the experimental design, including the
simulation of the 1915 observing network, the ensemble
data assimilation system and forecast model. Section 3
presents the results of the assimilation experiments, which
show that the EnSRF can produce mid-tropospheric anal-
yses given surface observations at 1915 densities which
are as accurate as 2.5 day forecasts are today. Section 4
contains a summary of the results and a discussion of the
unresolved issues that need to be addressed before these
techniques can be applied to a real reanalysis of the first
half of the 20th century.



2. Experimental Design

a. The Observations

To simulate how a modern data assimilation system can
be expected to perform on a historical observational net-
work, the 2001 observational network was reduced to only
surface observations with a density typical of 1915. The
number of synoptic observations potentially available for
each month during the period 1913-1917 was determined
in 5x5 degree boxes from a detailed inventory of the digital
land surface data holdings of the National Center for At-
mospheric Research (NCAR), the National Climatic Data
Center (NCDC), the Waves and Storms dataset (Schmith
et al. 1997), and manuscript data holdings of NCDC. The
Global Historical Climate Network (GHCN) surface pres-
sure station locations were used a proxy for synoptic re-
ports currently available only in manuscript form, some
of which are now being digitized by NCDC (S. Doty, per-
sonal communication), Environment Canada (V. Swail,
personal communication), the European Union (P. Jones,
personal communication) as well as other international ef-
forts (R. Jenne, personal communication). The marine ob-
servations available were also determined in 5x5 degree
boxes from a detailed inventory of ICOADS Release 2.0
(Woodruff et al. 1998; Diaz et al. 2002), the German Ma-
rine Meteorological archive (courtesy of V. Wagner), and
the Kobe Collection 2001 (Manabe 1999). The 1915 ob-
servation network was chosen for this study since it is rep-
resentative of data availability during the earlier part of
the 20th century. The number of surface observations in-
creases dramatically in the 1930’s and 1940’s.

The quality-controlled observations used as input to the
NCEP-NCAR reanalysis (Kistler and Coauthors 2001) for
2001 were sub-sampled to simulate the 1915 network.
The 2001 observations were first reduced by retaining only
surface pressure observations from radiosonde and ma-
rine reports issued within 30 minutes of the analysis time.
The location of the radiosonde stations gives an excel-
lent approximation to the location of historically available
land surface pressure stations. This reduced the total net-
work from over 150,000 observations to less than 2000 per
analysis. The simulated historical network was then con-
structed by randomly selecting from the reduced network
in each five-degree box with a probability equal to the av-
erage number of daily historical surface pressure observa-
tions in the box normalized by the average number of daily
surface pressure observations in the reduced 2001 net-
work. Figure 1 shows a map of the probabilities assigned
to each five-degree box. Surface temperature observa-
tions were included with each surface pressure observa-
tion (although surface temperature observations were not

assimilated, they were used to reduce the surface pres-
sure observation to the model orography as discussed in
the next paragraph). A map illustrating a typical simulated
surface pressure network at 00 and 12 UTC is shown in
the bottom hand panel of Figure 4. In this example there
are 204 surface pressure and temperature observations in
the Northern Hemisphere poleward of 20oN. At 06 and 18
UTC, the number of surface marine observations is nearly
the same, but there are almost no observations over land
areas.

Figure 1: Number of surface pressure observations (per
day) available in the Northern Hemisphere poleward of
20oN each year from all available digital sources, including
those currently being digitized.

Observational error standard deviations were the same
as those used in the NCEP-NCAR reanalysis, 1.6 hPa for
ship observations and 1 hPa for land stations. In situations
where the absolute difference between the model orog-
raphy and the real orography is less than 600 meters at
the observation location, and a co-located temperature ob-
servation is available, the surface pressure observation is
reduced to the model orography assuming the mean tem-
perature in the intervening layer is Tob+ 1

2 Γ∆z, where Tob is

the temperature observation, Γ is −6.5oKkm−1 and ∆z is
the difference between the model and real orography. The
observation error is adjusted accordingly, assuming that
the error in the estimate of the lapse rate Γ is 3oKkm−1.
If |∆z| > 600 m then the surface pressure observation is
not used. If a co-located temperature observation is not
available, the surface pressure observation is used with-
out modification if |∆z| < 10 m, otherwise it is not used.

To assess the benefit of flow dependent background-
error covariances, the analyses produced by the ensemble
data assimilation system are compared to those produced
by two other simpler systems with static background-error
covariance estimates. The 3DVar system used to produce
the NCEP-NCAR reanalysis, a.k.a the Climate Data As-
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similation System, or CDAS (Kistler and Coauthors 2001),
was adapted to the 1915 observation network by multiply-
ing the background-error covariances used in the reanaly-
sis by a constant factor > 1, and turning off the divergence
tendency constraint. We call this modified CDAS system
CDAS-SFC.

Increasing the background-error covariance amplitude
in the CDAS-SFC system was necessary since the
background-error covariances used in CDAS were tuned
to the modern observing network (Kistler and Coauthors
2001), with several orders of magnitude more observa-
tions. By trial and error we settled on a factor of 16. Values
less than 16 produced an inferior analysis, while values
greater than 16 did not result in a significantly better anal-
ysis. The spatial structure of the background-error covari-
ances (described in Parrish and Derber (1992)) was not
modified.

By performing single observation assimilation experi-
ments we found that the divergence tendency constraint
severely limited the size of the analysis increments when
the observation increment (first-guess minus observation)
was large. With the constraint turned off, the CDAS-SFC
system produced a larger analysis increment. The diver-
gence tendency constraint in the CDAS system was in-
tended to control the excitation of large-amplitude gravity
waves in the analysis. However we observed no signif-
icant increase in gravity wave noise after turning off this
constraint, but we did find a significant reduction in analy-
sis error.

The CDAS-SFC and EnSRF assimilation cycles were
started on 15 November 2001 and run through December
2001. The reanalysis fields for the same calendar day in
the previous year were used to start the CDAS-SFC anal-
ysis cycle. The EnSRF analysis was initialized with a ran-
dom sample of reanalysis states from Novembers 1971-
2000. Only results for December 2001 (using observations
sub-sampled at 1915 densities in the manner described
above) are presented; the analyses for the 15-day spin-up
period are discarded.

A simple statistical interpolation (SI) analysis was also
performed, using the 1971-2000 reanalysis climatology as
a first guess, and climatological anomaly covariances from
the reanalysis as a model for the background-error covari-
ances. The procedure for performing the SI analysis is
exactly the same as the procedure used to perform the
EnSRF analysis described in the following section, except
that instead of an ensemble of model forecasts a ran-
dom ensemble of NCEP-NCAR reanalysis states is used
to compute the background-error covariances.

For all the analysis experiments, analysis error was es-
timated by computing the root-mean squared difference

with the NCEP-NCAR reanalysis for 2001. Because the
reanalysis used several orders of magnitude more obser-
vations, including radiosondes, aircraft and satellite sound-
ings, we expect that this difference is significantly larger
than the error in the reanalysis itself.

b. The Ensemble Data Assimilation System

Ensemble data assimilation systems transform a fore-
cast ensemble into an analysis ensemble with appropri-
ate statistics. This can be done stochastically, treating the
observations as random variables, (e.g. Houtekamer and
Mitchell 1998; Burgers et al. 1998), or deterministically, re-
quiring that the covariance of the updated ensemble sat-
isfy the Kalman filter analysis error covariance equation.
Deterministic analysis ensemble updates are Monte-Carlo
implementations of Kalman square-root filters, hence we
call them ensemble square-root filters. Ensemble square-
root filters are not unique (Tippett et al. 2003), since differ-
ent ensembles can have the same covariance. This non-
uniqueness has led to the development of several differ-
ent algorithms for updating the analysis ensemble (Bishop
et al. 2001; Anderson 2001; Whitaker and Hamill 2002).
Here we implement the latter variant, which reduces to
a particularly simple form when observations are assimi-
lated serially (one after another).

Following the notation of Ide et al. (1997), let xb be
an m-dimensional background model forecast; let yo be
a p-dimensional set of observations; let H be the operator
that converts the model state to the observation space; let
Pb be the m×m-dimensional background-error covariance
matrix; and let R be the p× p-dimensional observation-
error covariance matrix. The minimum error-variance es-
timate of the analyzed state xa is then given by the tradi-
tional Kalman filter update equation (Lorenc 1986),

xa= xb+K(yo−Hxb), (1)

where

K = PbHT (HPbHT +R)−1
. (2)

The analysis-error covariance Pa is reduced by the intro-
duction of observations by an amount

Pa= (I−KH)Pb(I-KH)T +KRKT = (I-KH)Pb
. (3)

In ensemble data assimilation, PbHT is approximated
using the sample covariance estimated from an ensemble
of model forecasts. For the rest of the paper, the symbol
P is used to denote the sample covariance from an en-
semble, and K is understood to be computed using sam-
ple covariances. Expressing the variables as an ensemble
mean (denoted by an over-bar) and a deviation from the
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mean (denoted by a prime), the update equations for the
EnKF may be written as

xa=xb+K(yo-Hxb), (4)

x
′a = x

′a + K̃(y
′o−Hx

′b), (5)

where PbHT =(Hx
′b)x′bT ≡ 1

n−1 ∑n
i=1 Hx

′b
i x

′bT
i , n is the

ensemble size (= 100), K is the traditional Kalman gain
given by (2) and K̃ is the gain used to update deviations
from the ensemble mean. Note that an over-bar used in
a covariance estimate implies a factor of n− 1 instead of
n in the denominator, so that the estimate is unbiased. In
the EnKF, K̃= K, and y

′o are randomly drawn from the
probability distribution of observation errors (Burgers et al.
1998). This choice of y

′o ensures that for an infinitely large
ensemble, (3) will be satisfied exactly (Burgers et al. 1998).
However, as pointed out by Whitaker and Hamill (2002), for
a finite ensemble (3) will not be satisfied exactly, and the
noise added to the observations acts as an extra source of
sampling error, degrading the performance of the filter. In
the EnSRF, y

′o= 0 and K̃ is given by

K̃= PbHT
[
(
√

HPbHT +R)−1
]T

(

√
(HPbHT +R)+

√
R)−1

(6)
(Andrews 1968). This choice guarantees that (3) is sat-
isfied exactly. If R is diagonal, observations may be as-
similated serially, the analysis after assimilation of the Nth
observation becomes the background estimate for assimi-
lating the (N +1)th observation (Gelb et al. 1974), and the
above expression simplifies to

K̃=

(
1+

√
R

HPbHT + R

)−1

K, (7)

where R and HPbHT are scalars, while K and K̃ are vec-
tors of the same dimension as the model state vector. This
was first derived by J. Potter in 1964 (Maybeck 1979). Al-
though (6) requires the computation of two matrix square-
roots, the serial processing version (7) requires the com-
putation of only a scalar factor to weight the traditional
Kalman gain, and therefore is no more computationally ex-
pensive than the EnKF.

As discussed in Whitaker and Hamill (2002), sampling
error can cause filter divergence in any ensemble data as-
similation system, so some extra processing of the ensem-
ble covariances is usually necessary. The two techniques
used here are distance-dependent covariance localization
(Houtekamer and Mitchell 2001; Hamill et al. 2001) and
covariance inflation (Anderson and Anderson 1999).

Covariance localization is a filter that forces the ensem-
ble covariances to go to zero at some horizontal distance

L from the observation being assimilated. It is intended
to counter the tendency for ensemble variance to be ex-
cessively reduced by spurious long-range correlations be-
tween analysis and observations points. For all the exper-
iments shown here, L is set to 5000 km and the horizontal
structure of the filter is the same as used in Whitaker and
Hamill (2002). We also use a covariance filter in the ver-
tical which forces ensemble covariances to go to zero at
σ = 0.05 (roughly 50 mb). The vertical covariance local-
ization function has a value of 1 below σ = 0.2, zero above
σ = 0.05, and decreases linearly in σ between these lev-
els. The same covariance filter is also applied to the SI
analysis scheme, which uses a 100-member ensemble of
randomly chosen December reanalysis states, instead of
an ensemble of 6-h model forecasts.

Covariance inflation simply inflates the deviations from
the ensemble mean first-guess by a factor r > 1.0 for
each member of the ensemble, before the computation
of the background-error covariances and before any ob-
servations are assimilated. We have found that different
inflation factors are required in the Northern and Southern
Hemisphere, due to the large differences in the density of
the observing networks. In the limit that there are no ob-
servations influencing the analysis in a given region, it is
easy to see how inflating the ensemble every analysis time
can lead to unrealistically large ensemble variances, ex-
ceeding the climatological variance. The simulated 1915
network has very few observations in the Southern Hemi-
sphere extratropics, generally less than 20 per analysis
time. Therefore, only a very small inflation factor is needed
there. In the Northern Hemisphere, however, we found
it necessary to use a significantly larger inflation factor
to avoid filter divergence. For all the results presented
here, we use an inflation factor that varies smoothly across
the equator at σ = 1 from a value r = 1.07 in the North-
ern Hemisphere to a value of r = 1.007 in the Southern
Hemisphere. Our use of vertical covariance localization
means that no observations ever affect the analysis above
σ = 0.05. Therefore, in order to avoid the development
of excessive ensemble variance in the stratosphere, r is
set to its σ = 1 value at all levels up to σ = 0.2 and then
decreases linearly to unity at σ = 0.05.

Observations of surface pressure are processed seri-
ally. The ensemble mean and ensemble deviations are
updated using equations 4 and 5, with the Kalman gains
given by equations 2 and 7. Covariance inflation is ap-
plied to the background ensemble deviations before as-
similating any observations. Only those grid points within
L km of the observation are updated, where L = 5000km
is the covariance localization length scale. The analysis
is performed on a 128x64 Gaussian grid, and the forward
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operator H represents bi-linear interpolation to the obser-
vation location (and, if necessary, a reduction to the model
orography as described in section 2a). The analysis up-
dates for each observation are parallelized by partitioning
the model state vector by vertical level. For example, with
our vertical covariance localization only the lowest 23 (out
of 28) model levels are updated. To run the assimilation on
4 processors, 23 levels of zonal wind are updated on pro-
cessor 1, 23 levels of meridional wind on processor 2, 23
levels of temperature on processor 3, and 23 levels of spe-
cific humidity plus surface pressure on processor 4. The
only communication between processors needed during
the analysis update involves the propagation of Hxb from
the processor updating surface pressure (processor 4 in
this example) to the other processors. The results shown
here were run on 31 2.2 GHz Intel processors. Only 6
seconds wall-clock time were needed to process 417 sur-
face pressure observations for a 100-member ensemble
with L = 5000 km, or about 0.015 seconds per obser-
vation. Running the forecast ensemble to generate the
background estimates for the next assimilation time is triv-
ially parallel, since every ensemble member runs indepen-
dently on a separate processor. Experiments were also
run with a 200-member ensemble, with only a slight im-
provement in analysis error.

Although we do not employ an explicit treatment of
model error, our implementation of covariance localization
and inflation can be considered a crude parameterization
of model error. Covariance inflation increases the magni-
tude of the background-error covariance estimate. This is
necessary to deal with biases caused by sampling error
(as discussed by Whitaker and Hamill (2002)), but it can
also be thought of as accounting for unrepresented model-
error covariance. This can only account for model errors
that are in the same sub-space as the background en-
semble. Covariance localization forces the covariance be-
tween background-error estimates at two locations to go to
zero as the distance between the two locations increases.
This is necessary to deal with sampling error, even in the
absence of model error. However, the effect of covariance
localization is to increase the rank of the background-error
covariance estimate (Hamill et al. 2001). The extra de-
grees of freedom introduced into the background error es-
timate can be thought of as representing model errors that
do not project onto the sub-space spanned by the back-
ground ensemble.

c. The Forecast Model

The forecast model used is a recent version of the
NCEP global medium-range forecast model (MRF), which
was operational until mid-1998. The model is spectral with

a triangular truncation at wavenumber 62, with 28 sigma
levels. A detailed description of the model physics can
be found in Wu et al. (1997). Boundary conditions are
taken from the NCEP-NCAR reanalysis and are the same
for each ensemble member. No initialization is performed
during the CDAS-SFC or EnSRF analysis cycles.

3. Assimilation Results

Figure 2: Time series of RMS analysis error and ensemble
spread averaged over the Northern Hemisphere poleward
of 20oN for (A) mean sea level pressure (hPa) and (B) 500
hPa geopotential height (m).

Figure 2 summarizes the assimilation results for the
simulated December 1915 network. Shown are time series
of the root-mean square (RMS) analysis error for (A) mean
sea-level pressure (MSLP) and (B) 500 hPa geopotential
height (Z500). The analysis error (defined relative to the
NCEP-NCAR reanalysis and averaged over the Northern
Hemisphere poleward of 20oN) is shown for the EnSRF
(black curve) , SI (red curve), and CDAS-SFC (blue curve)
analyses, along with the spread of the EnSRF analysis
(green curve). The CDAS-SFC analysis is significantly
better than the SI analysis, indicating that using a six-hour
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model forecast as a first-guess in a 3DVar analysis is an
improvement over a climatological background, even for
this small number of surface pressure observations. How-
ever, the EnSRF analysis is about 50% more accurate than
the CDAS-SFC analysis. In fact, there is not a single case
in the one-month period where the CDAS-SFC is as accu-
rate as the EnSRF. We note that since we have made no
attempt to tune the structure of the background-error co-
variances used in CDAS for this very sparse observation
network, it is possible that a better specification of static
background-error covariances in the CDAS-SFC analysis
system would improve the CDAS-SFC analysis. The SI
analysis, which uses climatology as a background, has a
large diurnal cycle associated with the differences in the
number of observations available at 00 (12) UTC and 06
(18) UTC. This occurs because there is no mechanism in
the SI analysis to propagate information forward in time.

Averaged over the Northern Hemisphere extratropics,
the spread in the EnSRF has nearly the same mean value
as the RMS error, indicating that our implementation of co-
variance localization and inflation has successfully coun-
tered the loss of ensemble variance expected from sam-
pling error and the lack of an explicit treatment of model
error. The pattern of ensemble spread, averaged over
the month-long assimilation period, is also quite similar
to the pattern of the ensemble mean RMS error (Fig. 3).
However, close inspection of Figure 3 reveals that in data-
dense (data-sparse) regions, the ensemble mean spread
is somewhat smaller (larger) than analysis error. This is
in part due to our implementation of covariance inflation.
Over data-sparse areas that are only weakly influenced
by observations, covariance inflation increases ensemble
variance too much. We have tuned the inflation factor so
that the Northern Hemisphere average value of spread
is similar to analysis error, consequently ensemble vari-
ance over data-dense areas must be deficient in order
to balance the tendency for ensemble spread to be too
large over data-sparse areas. This behavior may also be
in part a manifestation of spatially correlated observation
error, perhaps associated with “representativeness error”
(e.g. Liu and Rabier 2002). Our analysis algorithm as-
sumes that the errors for each observation are indepen-
dent. If observation errors are actually spatially correlated,
the filter may reduce the variance of the ensemble too
much. Further study is needed to assess the impact of
mis-specification of observation-error covariances on the
performance of ensemble data assimilation systems, par-
ticularly with dense observation networks. The inhomo-
geneity of the ensemble variance shown in Figure 3 helps
explain how the EnSRF is able to outperform the CDAS-
SFC system, which assumes that the background-error

Figure 3: Maps of 500 hPa geopotential height (A) ensem-
ble mean analysis error, and (B) ensemble spread aver-
aged over the 124 December analyses for the simulated
1915 surface pressure network. (C) Mean 60-h 500 hPa
geopotential height forecast error for forecasts initialized
from all 744 00 UTC December NCEP/NCAR reanalyses
for 1979-2002. Units are meters.
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variance is a function of latitude only (Parrish and Derber
1992). A 3DVar system could probably be tuned to the
1915 surface pressure network to produce a better esti-
mate of the spatial varying nature of the error in the first
guess, and hence a better analysis. However, the EnSRF
is able to do this with little tuning (only the specification of
the covariance localization and inflation parameters). We
consider the ability of the EnSRF to adapt to large changes
in the structure of the observing network to be a very de-
sirable property for an analysis system to be used for a
reanalysis of the entire 20th century.

Also included in Figure 3 is a map showing the RMS
error of 60-hour forecasts run with same version of the
MRF used in the assimilation experiments, but initialized
from the 00 UTC reanalyses for all Decembers between
1979 and 20021. The mean RMS error averaged over the
Northern Hemisphere extratropics is 39 m, very close to
the mean December EnSRF analysis error for the simu-
lated 1915 network (Fig. 2). Therefore, we expect that
a reanalysis of the early 20th century using only surface
pressure observations should be about as accurate at 500
hPa (in a Northern Hemisphere average sense) as 60-h
forecasts are today. In fact, Fig. 3c shows that the EnSRF
is actually more accurate than modern 60-h forecasts over
most of the Northern Hemisphere, except over the polar
region and Asia, where there are voids in the simulated
1915 observation network.

A sample 500 hPa EnSRF analysis is shown in Figure
4 for 00UTC December 14, along with the correspond-
ing map from the NCEP-NCAR reanalysis (using all avail-
able observations). The EnSRF analysis, using only a
few hundred surface pressure observations, is clearly able
to reproduce most of the significant mid-tropospheric flow
features present in the reanalysis, including the synoptic-
scale short waves.

We have also performed experiments using observa-
tions for June 2001 sub-sampled to simulate the 1915 net-
work (not shown). The 500 hPa geopotential height RMS
Northern Hemisphere analysis errors for both the EnSRF
and CDAS-SFC analyses are about the same for June as
they are for December. However, since the climatological
variance of 500 hPa geopotential height is smaller in June
than December, the analysis errors expressed in terms
of anomaly correlation decline in June relative to Decem-
ber (0.85 versus 0.95 for the EnSRF). When compared to
forecasts initialized from the NCEP/NCAR reanalysis for
all Junes from 1979-2001, the EnSRF analyses generated
from the simulated June 1915 network have an RMS 500
hPa geopotential height error roughly equivalent to the 84-

1These forecasts were run as part of a separate “re-forecast” project
described in Hamill et al. (2003).

Figure 4: 500 hPa geopotential height analysis for 00UTC
Dec 14 2001 (contour interval 50 m). CDAS analysis, us-
ing all available observations is shown on top. EnSRF
analysis, using the simulated 1915 surface pressure ob-
servation network is shown on bottom. Black dots indicate
locations of surface pressure observations used in the En-
SRF analysis.
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h forecast (as compared to 60-h forecasts for the simulated
December 1915 network). The degradation in the June
analysis errors relative to December, which occurs for all
candidate analysis schemes, is likely due to the fact that
covariances between surface pressure and other variables
at other levels in the troposphere is larger in winter, when
coherent baroclinic systems are more prevalent.

4. Discussion and Conclusions

A Northern Hemisphere reanalysis of the middle and
lower troposphere for the first half of the 20th century is
feasible using only surface pressure observations. Ensem-
ble data assimilation techniques are particularly well suited
to the task, and can be expected to produce 500 hPa anal-
yses with errors similar to current 2-3 day forecasts.

Before such a reanalysis can be undertaken, methods
for quality control of the historical surface pressure obser-
vations will need to be developed. Background-error co-
variance estimates from the ensemble data assimilation
system could provide a basis for a simple “background
check” (Dee et al. 2001) which marks as suspect all ob-
servations whose deviation from the ensemble mean first
guess is greater than some factor times the background-
error variance estimate at the observation location. Typi-
cally, those observations flagged as suspect by the back-
ground check are then subjected to a “buddy check” (ibid),
which compares suspect observations to nearby obser-
vations which passed the background check. Unfortu-
nately, when observations are sparse, there may not be
very many “buddies”. Observation errors are likely to be
larger than they are assumed to be in this study, particu-
larly for ships. Currently we have no reliable estimates of
surface pressure observation error for observations taken
in the early 20th century.

Ensemble data assimilation systems are only now mov-
ing from the realm of perfect model, “identical twin” experi-
ments to real world cases with actual observations. There
is still research needed to fully realize the potential that en-
semble data assimilation holds for improving analyses and
forecasts. In particular, our results suggest that spatially
correlated “errors of representation” (which are incorpo-
rated into the overall observation error in most data assim-
ilation schemes) may adversely affect the performance of
ensemble filters which assume spatially uncorrelated ob-
servation errors. In addition, parameterizations of model
error that are more sophisticated than the combination of
covariance localization and inflation employed here will al-
most certainly improve the performance of ensemble data
assimilation systems.

Our results demonstrate that with some further develop-

ment, advanced ensemble data assimilation systems and
the available surface pressure observations could be used
to create a reanalysis of the entire 20th century. Such a
dataset would be useful for determining decadal variations
of synoptic-scale variability in the Northern Hemisphere
extratropics.
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