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1. INTRODUCTION 
  

Traditional quantitative precipitation forecasting 
(QPF) verification methods (e.g., threat score, equitable 
threat score and bias, as well as linear correlation 
coefficient and RMS error) are arguably limited owing to 
the tremendous scale-dependent variability of 
precipitation (Tustison et al. 2001), thus making the 
comparison of observations and model forecasts at 
different scales problematic. The challenge amplifies in 
the context of ensemble forecasting.  

A new methodology, based upon statistical multi-
scale analysis of precipitation and optimal estimation 
theory and called scale-recursive estimation (SRE) 
(Chou et al. 1994; Tustison et al. 2003), is proposed in 
this study to ensemble precipitation forecasts. The goals 
are twofold: 1) To evaluate the relative performance of 
multi-scale ensemble forecasts, and 2) to assess the 
usefulness of SRE in generating stochastic realizations 
of high-resolution precipitation forecasts from coarse-
resolution ensembles, in conjunction with high resolution 
radar observations. 

Ensemble forecasting has proven valuable in 
medium-range global model forecasts (6-10 days) and 
now is a foundation in major operational forecast 
centers around the world (Kalnay 2003). Short-range 
ensemble forecasting (SREF, ~40 km resolution, 1-3 
days) with limited-area models has been underway for 
some time (Brooks et al. 1995; Du and Tracton 2001; 
Hamill et al. 2000; Hou et al. 2001), and interest now is 
growing in storm-scale ensemble forecasts (Sindic-
Rancic et al. 1997; Elmore et al. 2003; Levit et al. 2004). 
Still, the effectiveness of the stochastic-dynamic 
approach on the storm-scale has yet to be fully explored, 
particularly the degree to which theories of error growth 
and initial condition specification at larger scales apply 
to smaller ones. 

In this study, the Advanced Regional Prediction 
System (ARPS) is used to produce multiple-resolution 
ensemble forecasts of a tornadic thunderstorm complex 
that occurred in the vicinity of Fort Worth, TX on 28-29 
March 2000. A five-member scaled lagged average 
forecasting (SLAF) ensemble (Ebisuzaki and Kalnay 
1991) is generated for each resolution ranging from 
coarse (24 km) to fine (storm-scale, 3 km). A single 
forecast at fine resolution (3 km) also is generated. SRE 
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is then applied to merge the model precipitation output 
by blending the coarse resolution ensembles with 
statistical information from the fine resolution forecast 
and/or high resolution NEXRAD Level-II radar data 
(remapped to 1.5 km grid-scale ARPS domain) to form a 
precipitation estimate with statistical information compa-
rable to a more expensive fine-resolution ensemble 
forecast.   

This extended abstract primarily presents the ARPS 
ensemble forecasting work. The SRE effort is still 
underway and findings from the study will be presented 
at the conference. Only the theory part is described in 
Section 5. 

 
2. STORM CASE DESCRIPTION 
 

The 28-29 March 2000 Fort Worth, TX tornadic 
thunderstorm case was selected because it has been 
well documented and simulated successfully with the 
ARPS model (Xue et al. 2003). These storm complex 
produced two tornadoes between 0015 and 0045 UTC 
on 29 March with maximum winds over 115 mph.  One 
tornado struck the downtown Fort Worth area for about 
15 min, causing two deaths, many injuries and 
extensive damage to buildings. Torrential rain produced 
flooding, and softball-size hail caused several casualties.  
Figure 1 shows the lowest tilt of reflectivity from the Fort 
Worth WSR-88D (KFWS) at 0000 UTC on 29 March.  A 
broken line of supercells is evident across the region. 
 

 
Figure 1. Fort Worth (KFWS) WSR-88D reflectivity at 
0000 UTC on 29 March 2000. 



The operational Eta model (not shown) predicted 
no precipitation south of Red River in the 12 hours prior 
to 0000 UTC on 29 March, presumably due to its coarse 
grid spacing and other limitations.  Readers are referred 
to Xue et al. (2003) and Levit et al. (2004) for more 
information regarding the storm environment. 

 
3. EXPERIMENT CONFIGURATION 
 

Because storm-scale forecasting generally requires 
very fine horizontal grid spacing (1-3 km), nested grids 
must be used. In this study, we employ triple nesting 
(Figure 2). Owing to the preference by SRE of a factor 
of 2 differences in spacing between adjacent grids, we 
use 24-km, 6-km, and 3-km spacing for the coarse, 
medium, and fine resolution domains, respectively. The 
fine 3-km domain is centered over Fort Worth with 
sufficient coverage for the features of interest. The 
numbers of horizontal grid points are shown in 
parentheses in Figure 2. All use 53 terrain-following 
vertical layers, with nonlinear stretching from 20 m at 
the ground to approximately 800 m at the top. 
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Figure 2. Domain configuration, with horizontal grid 
spacing and array dimension shown for each nested 
grid. 

 
Several approaches are available for creating 

ensemble initial conditions, e.g., Monte-Carlo (random 
perturbations), breeding of growing modes, lagged 
average forecasting, singular vector, and physics 
perturbation (Hamill et al. 2000; Kalnay 2003). Similar to 
the work reported by Levit et al. (2004) in this volume, 
we employ SLAF (Ebisuzaki and Kalnay 1991). 

For each nested domain, a 5-member SLAF 
ensemble (one control forecast plus 4 perturbed 
members) is generated. To construct the latter, the 
perturbation between a previous ARPS forecast and the 
current analysis is scaled based upon time (error growth) 
and then added to and subtracted from the analysis to 
form two (paired) members. A 5-member SLAF requires 
two successive previous ARPS forecasts.  

Figure 3 shows how the 24-km SLAF ensemble is 
constructed. P1 and P2 represent two previous 
forecasts initiated using the NCEP Eta analysis at 0600 
UTC and 0000 UTC 28 March, respectively. P0 is 
initiated at 1200 UTC the same way and serves as the 

control run. The ARPS Data Assimilation System (ADAS) 
(Brewster 1996) is used to produce gridded initial 
conditions for P0, P1, and P3. Observations analyzed 
include surface reports, wind profiler and rawinsonde 
data, ACARS commercial aircraft wind and temperature 
data, GOES visible and IR data, and Oklahoma 
Mesonet data. No radar data are used for 24-km domain.  

Forecast members s1 and s2 are generated using 
perturbations between P1 and P0; while s3 and s4 are 
do the same from P2 and P0. The 5 members (P0, s1, 
s2, s3, and s4) are integrated under the same 
conditions, each generating 18 h forecasts.  Lateral 
boundaries are always perturbed in a manner consistent 
with the initial conditions. 
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Figure 3. Diagram showing 24-km SLAF construction. 
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Figure 4. Construction of the 6-km and 3-km ensembles. 

 
Nested grids complicate the construction of 

ensemble forecasts because no unique strategy exists 
to link the grids. Thorough experiments are underway to 
address this issue, and we employ here a very a simple 
approach (Figure 4).  Only the control runs of the 6-km 
ensemble (cn) and 3-km ensemble (cn3) are nested 
successively from the coarser grids, as indicated with 
the curved dotted arrow. WSR-88D Level III reflectivity 
data are included in the ADAS analysis in addition to 
other observation data.  

The perturbed members are constructed directly for 
the two previous 24-km ARPS forecasts (interpolated 
onto 6-km and 3-km grids, respectively) and the current 
analyses on the finer grids (cn and cn3). For both the 
24-km and 6-km ensembles, the Kain-Fritsch (Kain and 
Fritsch 1993) cumulus parameterization scheme and 
explicit ice-phase microphysics are used.  For the 3-km 



ensemble, only the explicit microphysics scheme is 
applied. 
 
4. ENSEMBLE RESULTS 
 

In this section we present results from the 24-km 
ensemble and 3-km ensemble forecasts.  

 

 

 

 

Figure 5. (continued) 

 
Figure 5. 3-h accumulated rainfall valid at 0000 UTC on  
29 March 2000 from individual 24-km ensemble 
members (from top to bottom: P0 (cntl), s1, s2, s3, and 
s4). 

 
The predicted 3-h accumulated rainfall from the five 

ensemble members at 24-km grid spacing is shown in 
Figure 5.  Each member exhibits diversity and captures 
the major precipitation systems.  

Figure 6 shows the conditional probability of 
precipitation based upon the five ensemble members 
shown above.  It compares reasonably well with the 
Stage IV rainfall map, especially over the Fort Worth 
region (Figure 9), though with notable disagreement 
over far northeast and southeast Texas. 
 

 
Figure 6. Probability of 3-h rainfall exceeding 0.1 inch 
based upon the 24-km ensemble forecast valid at 0000 
UTC 29 March 2000. 

 
The hourly rainfall predicted from each 3-km 

ensemble member is presented in Figure 7, along with 
the ensemble mean. Not surprisingly, the 3-km 
ensemble contains significantly greater detail compared 
to its 24-km counterpart, and generally agrees more 
closely with reality (cf. Figures 1 and 9).  

Figure 8 presents the 3-km ensemble conditional 
probabilities of rainfall exceeding 0.1 and 0.5 inches for 
the 1-hour forecast. The maxima in probability are 
reasonably well aligned with the rainfall cores in the 
Stage IV rainfall map in Figure 9, and with the reflectivity 
shown in Figure 1.   
 



 

 

 

 
Figure 7. (continued) 

 

 
Figure 7. Hourly accumulated rainfall valid at 0000 UTC 
29 March 2000 from individual 3-km ensemble forecasts 
(from top down: cn3, s1, s2, s3, and s4), along with the 
ensemble mean (the bottom plot). 
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Figure 8. Conditional probabilities of accumulated 
rainfall exceeding 0.1 and 0.5 inches from the 1-hour, 3-
km ensemble forecast.   

 
At 3-km grid spacing, convection is explicitly 

resolved by the microphysics scheme, though this grid 
spacing is toward the upper limit of that deemed 
practicable for application to deep convection. Owing to 
the spatially intermittent nature of deep convection, the 
ensemble mean reflectivity forecast covers a much 
broader area than any of the individual forecasts, and 
each storm tends to be much weaker. For this reason, 
only conditional probabilities of surface reflectivity 



exceeding 35 dBZ and 45 dBZ are shown in Figure 10. 
They compare very favorably with the WSR-88D (KFWS) 
reflectivity in Figure 1. The low probability echoes over 
the southeastern portion of the domain are not shown in 
KFWS radar. 

  

 
Figure 9. Stage IV hourly rainfall valid at 0000 UTC 29 
March 2000. 
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Figure 10. Probability of surface reflectivity greater than 
35 dBZ (left) and 45 dBZ (right) from the 3-km ensemble 
valid at 0000 UTC 29 March 2000. 

 
 
5.  SCALED-RECURSIVE ESTIMATION - THEORY 
 

The proposed methodology utilizes stochastic 
scale-recursive estimation (SRE) technique introduced 
by Chou et al. (1994).  This technique, whose essence 
is derived from (similar to) Kalman filtering, can 
optimally merge observations of a process at different 
scales while explicitly accounting for their uncertainties 
and variability at all scales.  It requires the specification 
of a model (called multiscale model) describing how the 
process variability changes with scale.  A multi-scale 
process can be represented via an inverted tree 
structure, as illustrated schematically in Figure 11. This 
tree can essentially be viewed as a way of connecting 
information about the process at different scales.  Each 
node on the tree  corresponds to  a unique  combination 

of  scale and spatial  location,  and is  given  a  location  
index λ. The quantity γλ is used to specify the value 
falling directly above that node on the next coarser 
spatial scale of the tree (called the parent node). 

The representation of a  multi-scale process on  the 
inverted  tree is achieved via a governing state-space 
equation that specifies how the state at one scale 
relates to the state at other scales, i.e., the state-space  
recursive equation specifies how the multi-scale process 
evolves from coarse γλ to fine (λ) scale. Along with the 
estimate of the state, we are also interested in the 
scale-to-scale propagation of its variance in order to 
determine the uncertainty of the estimates. 

In order to incorporate the measurements of a 
process at different scales into this framework, it is 
necessary to form a measurement model that relates 
the measurements and the state of the system at a 
given location.  The measurement model incorporates 
the measurement uncertainty that may change with 
sensor and scale, as, for example, would be the case 
for rain gauges, radars, and satellites.  The state-space 
equation, variance propagation equation, and 
measurement model equation form the basic framework 
of SRE. 

The SRE algorithm consists of two steps: filtering 
and smoothing.  The filtering step (upward sweep) 
consists of initialization, measurement update, variance 
propagation and merging.  The second step (downward 
sweep) consists of smoothing, which allows the 
exchange of information between nodes of spatial 
proximity.  Figure 11 illustrates the inverted tree, the 
methodology by which  measurements  are placed  on  
the  tree  for inclusion  in  the multi-scale  estimation,  
and  the  upward and  downward  sweeps.   The details 
of the SRE algorithm can be found in the original work 
of Chou et al. (1994), and also in Kumar (1999), Primus 
(1996) and Tustison et al. (2003). 

The relevance of the SRE technique to QPF 
verification is that SRE can optimally combine the 
observations to a single product at any desired scale, 
and, in addition, provide an estimate of the uncertainty 
of this product.  By choosing the desired scale to be the 
scale (grid size) of the forecast model, one reduces the 
problem of QPF verification from multiple sensors to an 
easier problem of comparing two fields (merged 
observation product and model output) at the same 
scale.  Moreover, this comparison can be made in a 
more meaningful way since the uncertainty of the 
merged product is also known (probabilistic comparison).  

The effort to apply SRE technique to merge the 
precipitation forecasts data from the ARPS multiple 
resolution ensembles presented in previous sections 
and the high resolution WSR-88D radar observations is 
currently underway. The findings from this application 
will be presented at the conference. 

 
6. SUMMARY 
 

The Advanced Regional Prediction System (ARPS) 
was used to produce multiple resolution ensemble 
forecasts for the Fort Worth, Texas tornadic 
thunderstorm case. A five-member ensemble was 



generated using the SLAF technique at grid spacings 
ranging from coarse (24 and 6 km) to fine (3 km). 
Though very simple, the SLAF ensembles do show very 
promising storm scale forecasting skill.  

The suitability of scale-recursive estimation (SRE) 
for generating statistical realizations of fine-scale 
forecasts from coarse resolution forecasts and fine-
scale radar observations will be examined and 
presented at the conference. The proposed approach is 
to apply SRE method to merge model precipitation 
output by blending the coarse resolution ensembles with 
statistical information from the fine resolution forecast 
and/or high resolution NEXRAD Level-II radar data 
(remapped to 1.5 km grid-scale ARPS domain) to form a 
precipitation estimate with statistical information 

comparable to a more expensive fine resolution 
ensemble forecast.  
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Figure 11. Illustration of the scale-recursive estimation technique applied to precipitation measurements. Sparsely-
distributed measurements at one scale (gray dots), and measurements at a coarser scale (solid dots), are placed on 
an inverted quad-tree and merged via filtering and smoothing to obtain estimates at multiple scales (adapted from 
Tustison et al., 2003). 
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