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1. INTRODUCTION 
San Francisco International Airport (SFO) is 
unable to use independent parallel approaches to 
its closely-spaced parallel runways when Marine 
Stratus is present in the approach. Delay 
programs are imposed to regulate the flow of 
traffic to match the true arrival capacity of the 
airport. Failure to forecast accurately the times of 
onset and dissipation of stratus in the approach 
results in unnecessary delays, costly airborne 
holding and diversions, or in wasted capacity as 
the traffic management planners fail to match the 
arrival rate to the actual airport capacity. 
Theoretical studies have shown that accurate 1-2 
hour forecasts of the times of clearing in the 
approach could provide substantial reductions in 
the delays and inefficiencies associated with the 
Marine Stratus impacts on air traffic at SFO (Clark 
and Wilson, 1997). This provides enough time for 
planes to travel to SFO from Western points of 
origin. 

This investigation will focus on decision aids for 
assisting the modification or cancellation of an 
existing delay program. Implementation of an 
coordinated Forecast and Traffic Management 
system has been impeded by the lack of a 
mechanism for dealing with the uncertainties in 
forecast performance. 

 At issue is the trade-off between the delays 
incurred, when the strategy is overly conservative, 
and the airborne holding and congestion, which 
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may occur when the strategy is overly aggressive. 
Requests from traffic managers and recent 
advances in automated traffic management 
models indicate that probabilistic forecasts may 
have a role in resolving these issues. 

2. DETERMINISTIC FORECASTS FOR SFO 
The SFO Marine Stratus Initiative has developed 
four core deterministic forecast algorithms, and a 
Consensus Forecast (CF) product (Wilson and 
Clark, 2000). The historical performance for each 
of the core forecasts have been studied and the 
error characteristics have been established for a 
variety of meteorological situations. There is no 
evidence that the errors are correlated. The 
consensus forecast is the weighed average of the 
core forecasts, using inverse variance weighting. 
This approach is followed, even when some of the 
core forecasts fail to be issued, due to missing 
data.  

The four core forecasts are: 

COBEL – a column model, which provides a 
detailed dynamical analysis of the heat budget for 
the dissipation. 

RSFM – a statistical forecast model based on 
regional NWS surface data. 

SSFM - a statistical forecast model based on NWS 
satellite data (visible channel). 

LSFM – a statistical forecast model base on data 
obtained from special project sensors along the 
approach to SFO. 

Forecasts of the expected time of clearing are 
issued bi-hourly from 9z to 15z, and hourly from 
15z to 18z, or until the stratus has cleared in the 
approach. If two or more core forecasts are 
missing, then the CF forecast is computed from 
the available core forecasts, and the confidence 
factor is reduced. The early forecasts are used for 
deciding whether or not to invoke a delay program, 
and the later forecasts are used for deciding when 
to modify or cancel a delay program. 



3. PROBABILISTIC FORECASTS FOR SFO 
Probabilistic forecasts traditionally have been 
based on a logistic (nonlinear) regression against 
a set of predictors. Initial applications were 
directed towards Model Output Statistics (MOS) 
(Glahn and Lowery, 1972), where the predictors 
are taken from NWP model fields. Vislocky and 
Fritsch, 1997, have shown that using observations 
as predictors has merit for shorter forecast 
horizons, although data quality issues complicate 
the operational use of observational data (Allen, 
2001). Another possibility is using other forecasts 
as the predictors (Fritsch et al, 2000). In the 
current application, the predictors for the logistic 
regression are taken from the core forecasts and 
the consensus forecast. 

The selection of the objective function determines 
the characteristics of the resulting forecast system. 
Each of the above authors has chosen to minimize 
of the Brier Score (BS) (Brier, 1950). This 
approach produces reliable forecasts (Murphy, 
1973). The probabilistic interpretation of the Pierce 
Skill Statistic (PSS) (Pierce, 1884 and Wilson, 
2002) provides forecasts, which optimally separate 
correct positives from false positives, but which 
may not be reliable. The statistics literature 
suggests that Maximum Likelihood Estimation 
(MLE) is preferred for logistic regression (e.g. 
Darlington, 1990). The point is that there are 
choices, and we shall discover that different 
objective functions lead to forecasts with different 
strengths and weaknesses. We construct 
forecasts with a variety of objectives and compare 
the results. 

To avoid over-training, it is important to have a 
sufficiently large set of cases in the training data. 
The SFO Marine Stratus Initiative provides 
deterministic forecasts in the summers of 1996-
2002. Examination of the data reveals that the 
COBEL model frequently fails to issue a forecast. 
Since inclusion of COBEL would severely reduce 
the number of training cases, we have decided to 
build our probabilistic forecast models using the 
predictors RSFM, SSFM, LSFM, and CF. (CF 
contains COBEL information when it is available). 
Restricting to cases where these four forecasts 
are all available produces training sets with 191 
cases at 15z, 181 cases at 16z, and 141 cases at 
17z, sufficient for the construction of probabilistic 
forecast models with cross validation. 

The first step is to build probability forecasts for 
quarter-hour categories, beginning at the time that 
the forecast is issued, and continuing to 24z. The 
forecast is the probability that the SFO approach 

will be cloud-free before the category end-time. 
The series of forecasted probabilities provides the 
cumulative distribution function (CDF). Forecast 
models are determined separately for each 
category. This means that we are building a 
succession of 5-parameter models, well within the 
capacity of the available training data. 

To properly constrain the regression, it is 
necessary that there be a reasonable number of 
positive and negative cases for each category. For 
our analysis, we require at least 20 of each. Since 
the approach is not clear at the time that the 
forecast is issued, there often are not enough 
positives for an hour or more after the issue time. 
Since it usually clears before 20z, there often are 
not enough negatives after 19:30. The 
consequence of these data scarcities is that we 
are only able to generate probabilistic forecast 
models for a couple of hours in the middle of the 
CDF domain; we must extend the CDF to the 
extremes by other means. We assume the CDF is 
0 at the issue time and 1 at 24z. We then extend 
the CDF to the full domain by logistic-linear 
interpolation. 

This approach produces categorical probabilistic 
forecasts, and we can apply traditional categorical 
skill statistics to evaluate their performance. First 
of all, we evaluate the CF skill on these 
categories, using the PSS and the Correct Alert 
Ratio (CAR), the complement of the False Alert 
Ratio (FAR = 1 – CAR) (Wilks, 1995). Since the 
CAR is provides the historical performance of the 
deterministic forecast system, a stationarity 
hypothesis leads to its use as a CAR probabilistic 
forecast model:  

                      CDF = CAR|(CF=T)                      (1) 

(conditional probability).  

For every CDF forecast, we can compute its 
probabilistic PSS and compare it to the PSS of the 
associated deterministic forecast. If the PSS of a 
CDF forecast is significantly less than the PSS of 
the underlying deterministic forecast, then there is 
a concern that we have lost skill in the transition to 
probabilistic forecasts. 

Another measure of the accuracy of a 
deterministic forecast is the mean squared error 
(MSE). We recall that the MSE is the sum of the 
error variance and the squared error bias. There is 
an analogue for CDF forecasts. Define the Total 
Mean Squared Error (TMSE) to be the average 
error of CDF over the entire training set: 



        ∫∑ −= dt(t))f(o(1/N)TMSE
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where fi is the probability density function of the 
CDF, and oi is the observed outcome. Standard 
algebraic tricks lead to the decomposition: 

         222
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where βf is the bias and σf
2 is the variance of the 

CDF, and σβ
2 is the variance of the biases. For a 

deterministic forecast, the CDF is a step function 
(σf

2 =0) and so TMSE = MSE.  

Minimizing the TMSE provides another possible 
objective for building CDF’s. The practical difficulty 
with this approach is that it requires building the 
CDF’s for all categories simultaneously. With 
approximately 10 categories in the middle of the 
CDF domain, this would require the simultaneous 
determination of 50 model parameters, well 
beyond the capacity of our training data. We have 
developed a nudging process, which allows us to 
adjust a candidate CDF forecast to improve its 
TSME, by adjusting 10 parameters. When applied 
to the reliable BS forecasts, this method preserves 
the reliability and reduces the mean variance of 
the CDF. 

We construct CDF forecasts using the model 
performance (CAR), the BS objective, the PSS 
objective, and the TMSE nudging of the BS result 
(TM). The probability densities of the CDF 
forecasts are plotted in Figure 1. Also shown are 
the conditional climatology (CC), the CF forecast 
(dashed line), and the observed time of clearing  
(solid line).  

 

 

 

 

 

 

 

 

 

Figure 1. Probability densities of CDF forecasts. 

Note that the CC forecast provides the poorest 
definition, that the CAR and BS forecasts have 
similar definition, and that the PSS and TM 

forecasts have the sharpest definition, but PSS 
has more bias. We observe this pattern throughout 
the training set. 

4. APPLICATION TO AIR TRAFFIC  
While skill metrics provide measures of technical 
success for developers, the practical measure of 
success is that the forecasts provide good service 
to their intended users, in this case, air traffic 
managers. One user, presently attempting to use 
these forecasts, has asked for the CAR as a 
measure of confidence. A proposed strategy is to 
make a commitment to cancel a program for the 
time when the CAR exceeds a threshold, e.g. 
90%. Users have not discussed the possibility of 
using a different CDF forecast. 

The current focus is the support of the Stochastic 
Ground Hold Plan (SGHP) model (Hoffman and 
Ball, 2000). This model determines the optimal 
strategy for holding some planes on the ground 
and releasing the rest to travel to the destination 
airport. Planes that are released prematurely will 
be subjected to airborne holding near the 
destination. Airborne holding presents additional 
costs to the airlines and air traffic management 
problems for Air Traffic Control (ATC). Planes 
belatedly released from the ground hold, will incur 
unnecessary additional delay. It is assumed that 
there is a cost difference between ground holding 
and airborne holding, with the latter being 
substantially greater. The objective function is the 
total cost, the product of cost-rate and holding 
times. The model determines the release strategy 
if clearing occurred in each category, and uses the 
forecasted probabilities to compute the expected 
associated cost. The plan for the release of 
ground held planes is determined by minimizing 
the total system cost. 

Preliminary investigations indicate that smaller 
CDF variances are preferable, provided that the 
other factors are controlled. These investigations 
are ongoing. The initial (subjective) conclusion is 
that the BS-TM model provides the best guidance 
for use in the SGHP model. 

Figure 2 provides the results when the forecasts 
for Figure 1 are input to the SGHP model. Three 
CDF forecasts are considered: CAR, BS, and TM. 
The vertical axis indicates the number of planes in 
the airborne queue at each quarter hour. More 
than eleven planes in the airborne queue places 
an excessive burden on ATC. The EAQ graphs 
indicate the expected airborne queue, according to 
the SGHP analysis. The AAQ graphs indicate the 
actual airborne queues, which would have been 
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realized under the various plans, based on the 
actual time of clearing. The Delay Panel lists the 
total aircraft delay hours that would have been 
realized under the various plans. The Worst and 
Best delay values are included to bracket the 
outcomes. The Worst case assumes that planes 
are released only after clearing is observed, and 
that the transit time is 1.25 hours. The Best time 
assumes that there was a perfect deterministic 
forecast, and that the traffic management decision 
uses this information effectively. The deterministic 
forecast was slightly late and this induced a slight 
late bias in the CDF’s. Since there is some 
probability density prior to the time of clearing, 
SGHP does provide for some early releases. 
However, the early actual clearing provides 
welcome relief, and the airborne queues are not 
excessive. We note that the CAR plan expects 
some airborne queue, but none is realized, and it 
adds 10 a/c hours of delay. The BS plan expects 
the largest airborne queue, and its actual airborne 
queue is temporarily excessive. The BS plan adds 
only 4 a/c hours of delay. The TM plan adds only 5 
a/c hours of delay, and has a much smaller 
airborne queue. 

 

 

 

 

 

 

 

 

 

 

Figure 2. An example of the expected and actual 
airborne queues using different CDF forecasts as 
input for the SGHP model. 

5. CONCLUSIONS 
We have introduced a methodology for using the 
deterministic forecasts from the SFO Marine 
Stratus Initiative as predictors for developing 
probabilistic forecast models. There are options in 
the optimization objective, which leads to models 
with different forecast characteristics. When 
forecast skill is measured by PSS, the probabilistic 
forecasts have similar, but lesser skill than the 
underlying deterministic forecasts. In the cases 

under investigation, there seems to be a trade-off 
between reliability and skill in the sense of Pierce.  

The TMSE provides an additional measure of skill. 
Practical considerations preclude direct TMSE 
optimization, but a nudging method has been 
developed, which permits TMSE improvement of 
BS optimized forecasts. These TM forecasts have 
qualities similar to the PSS optimized forecasts. 
Preliminary investigations indicate that the TM 
forecasts have a good synergy with the needs of 
the SGHP traffic management model. 
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