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Abstract

Radar reflectivity data can be quality-controlled using
just the radar moments, and several techniques have
been proposed to do this. It is possible to use texture
features as inputs to a neural network to discriminate be-
tween precipitating radar echoes, and echoes that corre-
spond to clear-air return, ground clutter or anamalous
propagation. A texture feature neural network that was
recently developed at the National Severe Storms Lab-
oratory performs much better at this discrimination than
other radar-moment-based quality control methods dis-
cussed in the literature.

However none of the radar-only techniques can dis-
criminate betwen shallow precipitation and spatially
smooth clear-air return. The radar-only techniques also
have problems removing some biological targets, chaff
and terrain-induced ground clutter far away from the
radar.

We show how the use of satellite infrared channel
data and surface observations can help the radar qual-
ity problem in these situations. There are several prac-
tical issues related to using satellite and surface data,
however, mostly having to do with the low spatial and
temporal resolution of the non-radar observations. We
describe the considerations in assimilating infrared data
from satellites and surface observations from mesoscale
models especially with regard to temporal resolution. We
then describe using the assimilated grid to remove clutter
and non-precipitating targets from radar reflectivity data.
Based on archived data sets, we show that such quality
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control works, and would be useful, if the surface obser-
vations can be received in near-realtime.

1. Introduction

From the point of view of automated applications operat-
ing on weather data, echoes in radar reflectivity may be
contaminated. These applications require that echoes
in the radar reflectivity moment correspond, broadly,
to “weather”. By removing ground clutter contamina-
tion, estimates of rainfall from the radar data using the
National Weather Service (NWS) Weather Surveillance
Radar-Doppler 1998 (WSR-88D) can be improved (Ful-
ton et al. 1998; Kessinger et al. 2003). A large num-
ber of false positives for the Mesocyclone Detection Al-
gorithm (Stumpf et al. 1995) are caused in regions of
clear-air return (McGrath et al. 2002). A hierarchical mo-
tion estimation technique segments and forecasts poorly
in regions of ground clutter (Lakshmanan et al. 2003c;
Lakshmanan 2001). Hence, a completely automated al-
gorithm that can remove regions of ground clutter, ana-
malous propagation and clear-air returns from the radar
reflectivity field would be very useful in improving the per-
formance of other automated weather algorithms.

For a good review of the literature on ground clut-
ter contamination, the interested reader is refered
to (Steiner and Smith 2002). Local neighborhoods in
the vicinity of every pixel in the three weather radar mo-
ments were examined by Kessinger et al. (2003) and
used for automated removal of non-precipitating echoes.
They achieved success by examining some local statis-
tical features (the mean, median, and standard devia-
tion within a local neighborhood of each gate in the mo-
ment fields) and a few heuristic features. Steiner and
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Smith (2002) introduced the “SPIN” which is the frac-
tion of gate-to-gate differences in a 11x21 local neigh-
borhood that exceed a certain threshold (2dBZ in prac-
tice) to the total number of such differences. Kessinger
et al. (2003) introduced the “SIGN”, the average of the
signs of the gate-to-gate difference field within the local
neighborhood. Steiner and Smith (2002) used a decision
tree to classify pixels into two categories – precipitation
and non-precipitating while Kessinger et al. (2003) used
a fuzzy rule base using features that included the SPIN
feature introduced by Steiner and Smith (2002). In ad-
dition to these elevation-based features, some vertical-
profile features were also used – the maximum height
of a 5dBZ echo was used by Steiner and Smith (2002).
Kessinger et al. (2003) discussed the use of vertical dif-
ferences between the two lowest reflectivity scans.

Neural networks (NNs) have been utilized in a variety
of meteorological applications. For example, NNs have
been used for prediction of rainfall amounts by Venkate-
san et al. (1997) and for identification of tornados
by Marzban and Stumpf (1996). In fact, Cornelius et al.
(1995) attempted to solve the radar quality problem us-
ing neural networks. However, the performance of the
neural network was no better than a fuzzy logic classifier
(Kessigner, personal correspondence), and the neural
network attempt was dropped in favor of the much more
transparent fuzzy logic approach described in Kessinger
et al. (2003).

Lakshmanan et al. (2003a) describe the development
of a neural network that uses texture features as in-
puts to a neural network (Lakshmanan et al. 2003b)
that can distinguish between precipitating and non-
precipitating radar echoes and compare the performance
of the resulting network with the fuzzy logic technique
of Kessinger et al. (2003). Robinson et al. (2001) com-
pared the technique of Kessinger et al. (2003) with the
technique of Steiner and Smith (2002) and other meth-
ods, finding that the methods of Kessinger et al. (2003)
and of Steiner and Smith (2002) performed equally well.

In (Lakshmanan et al. 2003b), the QC neural net-
work was found to outperform the method of Kessinger
et al. (2003). However, there were some specific sit-
uations where the texture features used as inputs to
the neural network did not possess sufficient discrima-
tion power. These situations include the presence of
large, spatially-smooth, clear-air returns, the presence

of terrain-induced ground clutter and chaff.
In this paper, we describe, in brief, the neural network

based on texture features, and three Doppler radar mo-
ments, and describe the assimilation of data from other
sensors to perform quality control.

2. Texture Feature Neural Network

Velocity data can be range-folded (aliased). In the WSR-
88D, at the lowest tilt, the velocity scan has a shorter
range than the reflectivity one. We therefore divided the
training pixels into two groups – one where velocity data
were available and another where there was no Doppler
velocity (or spectrum width) information. Thus, two sepa-
rate neural networks were trained. In real-time operation,
the appropriate network was invoked for each pixel de-
pending on whether there were velocity data at that point.
All the neural network inputs were scaled such that each
feature in the training data exhibited a zero mean and a
unit variance when the mean and variance are computed
across all patterns.

The final set of features used in the network were:

1. Lowest scan of velocity, spectrum width and the sec-
ond lowest scan of reflectivity: local mean, local
variance, difference between the data value and the
mean

2. The lowest scan of reflectivity: local mean, lo-
cal variance, difference between the data value
and the local mean, REC Texture (Kessinger et al.
2003), homogeneity, SPIN (Steiner and Smith
2002), number of inflections at a 2dBZ threshold,
SIGN (Kessinger et al. 2003), echo size.

3. Vertical profile of reflectivity: maximum value,
weighted average, difference between data values
at the two lowest scans, echo top height at a 5dBZ
threshold.

Histograms of a few selected features are shown in
Figure 1. It should be noted that these features are not
linear discriminants by any means – it is the combination
of features that gives the neural network its discriminat-
ing ability. The histogram of Figure 1d illustrates the re-
sult of several strategies we adopt during the training, so
that higher reflectivities are not automatically accepted.
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Figure 1: Histograms of selected features on the training data set, after the features have been normalized to be of
zero mean and unit variance. (a)Homogeneity (b) Radial inflections (c) Mean spectrum width (d) Mean reflectivity
(e) SPIN. Note in (d) that, as a result of careful construction of the training set and selective emphasis, that the
mean reflectivity histograms are nearly identical – this is not the apriori distribution of the two classes since AP is
rare, and clear-air return tends to be smaller reflectivity values.

We used a fully feedforward resilient backpropagation
neural network (RPROP, Riedmiller and Braun (1993))
with one hidden layer. The error function that was
minimized was a weighted sum of the cross-entropy
(which Bishop (1995) suggests is the best measure of
error in binary classification problems) and the squared
sum of all the weights in the network:

E = Ee + λΣw2
ij (1)

The first term is a variation of the cross-entropy error
suggested by Bishop (1995) and is defined as:

Ee = −
N∑

n=1

cn(tnlnyn + (1− tn)ln(1− yn)) (2)

where tn is the target value of the nth training pattern (0 if
non-precipitating and 1 if precipitating) while yn is the ac-
tual output of the neural network for that pattern input. N
is the total number of patterns. The cost, cn, captures the
importance of that pattern. The second, square weights,
term attempts to reduce the size of the weights, and thus
improves generalization (Krogh and Hertz 1992). The
relative weight, λ, of the two measures is computed ev-
ery 50 epochs within a Bayesian framework.

The with-velocity network had 22 inputs, 5 hidden
nodes and one output while the reflectivity-only network
had 16 inputs, 4 hidden nodes and one output.

The training of the network, including the use of pre-
classification, is discussed in (Lakshmanan et al. 2003a).
The peformance comparision from that study is repeated
here in Figures 2 and 3.

Although the neural network computes the posterior
probability that given the input vector, the pixel corre-
sponds to precipitating echoes, adjacent pixels are not

truly independent. Hence, the final 2D polar grid of pos-
terior probabilities are mean filtered, and it is this mean-
field that is used to perform quality control on the radar
data. If the mean-field value is greater than 0.5, the pixel
is assumed to have good precipitating data, and all el-
evations at that location are accepted. Bad data val-
ues are wiped out en-masse, although some researchers
(e.g: Steiner and Smith (2002)) use data from higher el-
evations in such cases.

a. Performance

We used a testing set, independent of the training and
validation sets and it is this independent set that the re-
sults are reported on.

3. Cloud cover

It is possible from the infrared channel of satellite data,
to retreive the temperature of whatever the satellite is
sensing. If not for the presence of clouds, the satellite
would be sensing the ground temperature. The higher
the clouds, the greater the difference between the sur-
face temperature and the cloud-top temperature sensed
by the satellite. Thus, the difference between the cloud-
top temperature and the surface temperature can be
used as a proxy for the presence of cloud-cover at any
point (Jian Zhang, personal correspondence).

Radar tilts are obtained every 20-30 seconds. The dif-
ference field, if it is to be used to quality-control radar
data corresponding to fast moving fronts, needs to be
within a few minutes of the radar data. Satellite data

3



Figure 2: A ROC curve showing the performance of the
neural network on the training and testing data sets. Also
shown, for comparision, is the performance of the Radar
Echo Classifier. Three thresholds are marked on each
of the curves – a indicates a 0.25 threshold, x a 0.5
threshold and c a 0.75 threshold. Classifiers with curves
above the dashed diagonal can be considered skilled.
The closer a classifier is squashed to the left and top
boundaries of the graph, the better it is.

is obtained every 30-minutes on average, but with the
transmission times taken into account, the data may be
as old as 45 minutes. However, it was shown in Lak-
shmanan et al. (2003c), that a K-Means clustering and
advection method can be used to advect the cloud-top
temperatures seen in satellite infrared data. Thus, we
ingest satellite data in real-time and advect it to the time
of the radar tilts. The spatial resolution is also poorer
than that of radar. However, satellite data is inherently
smoother, and bilinear interpolation of the data in be-
tween grid points works well. Obtaining surface tempera-
ture in real-time is more problematic. The Rapid Update
Cycle (RUC2) model produces analysis grids of surface
temperatures at 1-hour intervals. Unfortunately, they are
also distributed nearly an hour after creation, so the data
embedded in the grids is nearly 2 hours old. The steps
involved in computing the cloud-cover field are shown in
Figure 4.

In the preliminary studies we have conducted, we
found that in precipitation regimes, the temperature dif-
ference is usually more than 20K (See Figures 5a and b).
Thus, if we pick a low enough threshold (we used 5K),

the risk of removing precipitation should be extremely
small.

More study needs to be done to pick the appropriate
temperature threshold. Ideally, instead of using a single
threshold to discriminate between precipiting pixels and
non-precipiting pixels, we need to:

1. Develop a relationship between the radar reflectivity
value and the expected temperature difference.

2. Use the difference between the actual radar reflec-
tivity at that pixel and the reflectivity expected based
on its cloud-cover temperature difference as an ad-
ditional input feature in the neural network.

In the meantime, since we don’t have enough data
cases to develop a meaningful relationship and train
the network with it, the precipitation confidence field ob-
tained from the radar-only neural network is combined
in a fuzzy-logic manner with the temperature difference
field to obtain a final precipitation confidence field. This
field is thresholded at 0.5, and pixels where the confi-
dence is below the threshold are set to missing at all tilts.
The precipitation confidence field is recomputed with the
arrival of every reflectivity tilt (with the vertical fields com-
puted in a virtual volume manner Lynn and Lakshmanan
(2002)). The quality control neural network, enhanced
with cloud-cover, was tested in realtime during Spring
2003 in the WDSS-II system.

The utility of including multi-sensor data, beyond just
the radar-only neural network, is shown for a case of bi-
ological contamination in Figure 6. Notice that the radar-
only neural network does not remove all of the contam-
ination. The cloud-cover field helps us retain the small
cells to the north-west of the radar while removing the
biological contamination that persists after the radar-only
neural network is done.
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Figure 3: Testing cases: (a) A data case with significant AP (b) Edited using the neural network (c) Edited using
REC. Note that some very high-reflectivity AP values remain. (d) Typical spring precipitation (e) Edited using the
neural network (f) Edited using REC. Note that quite a few good echoes have been removed from the stratiform rain
region.
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Figure 4: Steps in computing the cloud-cover field for use in quality-control of radar data: (a) Satellite infrared
temperature field. (b) Surface temperature field from RUC2 model. (c) Multi-radar composite field. (d) Motion
estimates derived from a multi-radar composite. (e) Cloud-top temperature advected 35 minutes to match the radar
data time based on motion estimates derived from the radar field. (f) Cloud-cover field computed by differencing the
advected cloud-top temperature from the surface temperature.
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Figure 5: Radar reflectivity as a function of the difference between the cloud-top temperature and the surface
temperature on two storm cases ((a) May 8, 2003 (b) July 30, 2003 in Kansas)
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Figure 6: (a) Radar (KTLX) reflectivity composite showing effects of biological contamination. (b) The cloud-cover
field. (c) The effect of the radar-only quality control neural network. (d) The effect of using both the radar-only neural
network and the cloud cover field. Note that the small cells to the north-west of the radar are unaffected, but the
biological targets to the south of the radar are removed.
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