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1 INTRODUCTION

Floods in the U.S. are among the top two most
dangerous natural hazard in terms of frequency and
severity. Annual damages from 1990-1999 have av-
eraged $5.56 billion when adjusted to 1997 dollars
(NOAA 2000). The ten-year average (1992–2001)
number of flood fatalities in the U.S. is 88 per
year, second only to heat-related deaths (NOAA
2002). Globally, approximately 1.5 billion peo-
ple have been affected by floods from 1991–2000
(WMO 2001). Many countries are not prepared
to handle the social and economic impacts arising
from large flood disasters. However, given more
accurate and reliable flood forecasts with enough
lead time, governments may be able to act sooner
to ameliorate the potential impacts of a flood event
instead of just reacting to the situation.

In order to further improve heavy rainfall and
flood forecasts, an interdisciplinary and multi-scale
approach with state-of-the-art forecasting tech-
niques is needed. In meteorology, as numerical
weather prediction (NWP) continues to mature,
modeling experiments are now being performed at
many different space and time scales. Moreover,
ensemble-based predictions have become the stan-
dard at many weather services around the world.
Multi-model superensemble techniques (Krishna-
murti et al. 2000a, 2000b, 2001) are also being
shown to have great skill. Finally, mesoscale, or
limited-area, models have become increasingly val-
ued for predicting flood events. Still, successful
quantitative precipitation forecasting (QPF) on the
order of two to five days lead time is still very much
a challenge, especially for flood events over small
areas or over highly varying terrain.

This study, based on fuzzy set theory, aims to
improve the accuracy of real-time, global-scale pre-
cipitation and flood forecasts from one to five days
in advance. In this research, the author simulates a
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real-time prediction mode so as to demonstrate op-
erational feasibility. This above method utilizes a
non-linear classifier system that optimally weights
member model precipitation forecasts to produce
a more skillful end product. Using this tech-
nique, precipitation output can be collected along
with other surface forcings from an NWP model
and passed on to a spatially distributed hydrology
model. Streamflow hydrographs for selected major
flood cases can then be generated.

2 SUPERENSEMBLE METHOD-
OLOGY

In the classical superensemble technique, a bench-
mark analysis for any variable under study along
with several model forecasts from weather services
around the world are collected and arranged into
a data set that varies in both space and time.
Then, temporally, the data are split into two sub-
sets: one for training purposes and the other for
the actual forecast verification. Next, multiple lin-
ear regression is used on the training subset to de-
termine a set of statistical weights for each model
that minimizes the error between the combination
of those models (the superensemble) and the ob-
served state. Finally, these weights are applied to
the independent forecast subset in order to verify
the superensemble. The above process is repeated
for each variable, grid point, and forecast time. For
example, given discrete daily forecast data valid on
days one through six, for seven variables and 65
160 grid points (a global T–126 Gaussian grid),
there would be 2 736 720 different sets of coeffi-
cient weights and the same number of superensem-
ble forecasts. Figure 1 shows this schematically for
only one grid point, one variable, and one forecast
time while Equations 1 and 2 describe this method
mathematically:

S(t) = Ō +
N∑

i=1

ai(Fi(t)− F̄i) (1)



Figure 1: Superensemble forecast methodology

where S is the superensemble forecast, Ō the ob-
served mean over the training period, N the num-
ber of members, ai the ith model regression weight,
Fi(t) the ith model forecast, and F̄i the ith model
time mean over the training period. The weights
ai are determined via a least squares minimization
of the cost function J :

J =
T∑

t=1

(S(t)−O(t))2 (2)

where O(t) is the observed state, and T the length
of the training period, which is usually taken to
be about 120 days for NWP applications, except
precipitation, which uses about 65 training days.
In the minimization process, the matrix equation
A · ~x = ~b is solved with the constraint that
‖~b−A · ~x‖2 −→ 0. In this formulation, the N ×N
matrix A corresponds to the member model train-
ing data for one grid point, one variable, and one
forecast time. The N × 1 vector ~b holds the obser-
vations corresponding to the model forecast data.
The unknown coefficients for each model are con-
tained within the N × 1 vector ~x. The solution is
~x = A−1 ·~b, that is if A−1 exists (is non-singular).

In developing the superensemble, it is worth not-
ing here that the most effective forecasts are those
which are compatible with the training informa-
tion. In other words, the model data utilized should
be consistent for both the training and forecast

data sets. Furthermore, if the characteristics of any
member model at the code level changes during the
training or forecast phases, this would have a nega-
tive impact as the regression weights would become
rather ineffective.

3 FUZZY SET THEORY
METHODOLOGY

The following is a non-linear extension to the su-
perensemble methodology, and it is employed in
this study to improve the prediction of global pre-
cipitation with special focus on storms that cause
floods. This technique takes advantage of a dis-
tinct type of fuzzy system — the method of Takagi-
Sugeno (1985) — to produce a combination fore-
cast after Fiordaliso 1998 and Xiong et al. 2001).
While the author does not yet know of any appli-
cation of this method to NWP of rainfall, in the
latter article, Xiong et al. utilize this method to
forecast river streamflows over a two-year period.
Results show that this method outperforms the in-
dividual members and is a viable choice for combi-
nation forecasting. As in the superensemble, this
system is based on a post-processing algorithm that
weights each member model forecast in order to
produce a superior end product. Unlike the tradi-
tional superensemble, however, this non-linear ap-
proach uses fuzzy set theory to first classify pre-
cipitation regimes, then uses a sort of “smooth-
switching” regression technique. Also, the model
weights are now calculated at each time step.

Fuzzy set theory is useful for classifying proper-
ties of objects via descriptive terms such as “rather
cold”, “quite heavy”, “fast”, etc. Empirically, a
membership function can be formulated with the
result being any real number between zero and one
as opposed to only either of those two extremes.
This allows for a degree of uncertainty in portray-
ing an object’s properties and for a greater ability
to classify such properties. In meteorology, for ex-
ample, to classify rainfall intensity at a given sta-
tion, one may define a rainfall rate threshold of
20 mm per day such that anything greater is de-
scribed as “high” and anything less as “low”. Now,
if one station records a rainfall rate of 15 mm per
day while another registers five mm per day, one
can conclude that the first station exhibits a high
rainfall intensity with some degree of uncertainty.
For the second station, one is much less certain of
a high rainfall intensity. Empirically, the first sta-
tion has a membership value much closer to 1.0
than does the second station, where 1.0 represents
absolute certainty that the rainfall intensity is high



(i.e., greater than or equal to 20 mm per day).
In this research, p multi-model precipitation fore-

casts are collected at each grid point and for each
discrete forecast time i, as shown in the time se-
ries P̂1,i , P̂2,i , ..., P̂p,i . A vector can be con-
structed to hold the input variable data, as in
P̂i = [P̂1,i , P̂2,i , ..., P̂p,i]T . Given these inputs and
an objective univariate clustering algorithm, one
can divide each time series at each grid point into
any number of partitions (fuzzy sets) that describe
the rainfall intensity. In order to keep the number
of parameters at a minimum, only two fuzzy sets
are created here, one for low and one for high pre-
cipitation intensity. Moreover, an arithmetic mean
value, µr, is computed for both domains. This
mean value also serves as the group representative
for each domain. This step is termed fuzzification.
It is worth noting here that some of the rainfall val-
ues can belong to more than one domain, and this
is the case in this research.

The next step is called logic decision, which in-
volves specification of if-then inference rules and
the computation of a parameter called the “degree
of applicability” for each if-then rule. The parti-
tioned input domains (see step one) form an un-
derlying premise for the construction of the if-then
rules. Specifying these rules is important because
they describe how the process under study is be-
ing controlled (Xiong et al. 2001). In essence, the
question being posed is, “In what ways do the input
variables control the output?” The if-then rules are
generally descriptive in nature, and they take the
following form:

Rr : IF (x1 is A(1)
r , x2 is A(2)

r , ..., xp is A(p)
r )

THEN yr = fr(x1, x2, ..., xp),
(3)

where Rr is the rth if-then control rule (r =
1, 2, ..., k for k rules), x1, ..., xp are the input vari-
ables (the multi-model precipitation forecasts), p
is the number of input variables (input forecasts),
A

(1)
r , ..., A

(p)
r are the descriptors linked to the fuzzy

sets m
(1)
r , ...,m

(p)
r , fr(·) is the output function cor-

responding to the rth if-then rule whose result is
yr. This function can be expressed as:

yr = fr(x1, x2, ..., xp) = br(0) + br(1)x1 + ...+

br(p)xp = br(0) +
p∑

j=1

br(j)xj ,

(4)
where the coefficients br(j) are the unknown pa-
rameters to be estimated for each rule.

In this study of multi-model precipitation inputs
split into two domains (low and high precipitation),

it is possible to have 2p unique if-then inference
rules. To keep parameters at a minimum, how-
ever, it is best to limit the number of if-then rules.
This, in turn, will lead to better combination fore-
casts during the forecast phase (Fiordaliso 1998).
Hence, only two rules are selected here with the ma-
jor assumption being that the multi-model inputs
are similar in nature to the observations according
to the descriptors high and low. In other words,
the order of magnitude of model forecasts versus
observations is assumed to be the same. Hence,
the if-then rules are given as:

R1 : IF (P̂j,i is “low precipitation”, j = 1, ..., p)

THEN P̂c,i = b1(0) +
p∑

j=1

b1(j) · P̂j,i ,

(5)

R2 : IF (P̂j,i is “high precipitation”, j = 1, ..., p)

THEN P̂c,i = b2(0) +
p∑

j=1

b2(j) · P̂j,i .

(6)
Rule 1 states that if all model forecasts give low
precipitation, thencombine them accordingly. Rule
2 outlines a similar combination algorithm when all
models have high precipitation.

Another piece in this formulation is the compu-
tation of the “degree of applicability,” given by α.
It is specified rather arbitrarily depending on the
application. For this research, it is taken as the
radial basis function (RBF) in Gaussian form after
Fiordaliso (1998):

αr(P̂i) = exp(−‖P̂i − µr‖22) (7)

This parameter serves two purposes. First, it de-
scribes how effectively the different inputs x1, ..., xp

satisfy a given if-then rule. The more an input con-
forms to a given rule r, the closer αr is to unity.
Second, this parameter also serves as a weighting
factor for the final scalar output P̂c,i , as seen in
the following:

P̂c,i =
∑k

r=1 αryr∑k
r=1 αr

=
∑k

r=1 αrfr(x1, x2, ..., xp)∑k
r=1 αr

.

(8)
Thus, the αr weights are applied to the “interme-
diate” output yr that was already calculated from
each of the r if-then rules. As seen in Equation
8, the final desired output P̂c,i is just a weighted
average of all the “intermediate” outputs yr. The
unknowns in the system are contained within the
yr term.
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Figure 2: Day 1 equitable threat score (ETS) for
8 thresholds averaged over 15 Aug to 14 Sep, 2003
and from 40◦N to 40◦S. M1 through M5 denote
the 5 multi-models, EMN the regular ensemble
mean, SUP the classic superensemble, BCE the
bias-corrected ensemble mean, and FUZ the com-
bination forecast based on the fuzzy set method.

Ultimately, by substituting Equation 4 into 8, it
is demonstrated that the input variables are lin-
early combined to produce the desired end prod-
uct. The right-hand side can be simplified into
w0,i + w1,i · P̂1,i + w2,i · P̂2,i + · · · + wp,i · P̂p,i ,
where

w0,i =
∑k

r=1 αr(P̂i) · br(0)∑k
r=1 αr(P̂i)

, (9)

wj,i =
∑k

r=1 αr(P̂i) · br(j)∑k
r=1 αr(P̂i)

, j = 1, 2, ..., p . (10)

The w0,i , w1,i , ..., wp,i weights vary with each time
step i, while the unknown parameters br(j), j =
0, 1, ..., p for each rule are estimated through a
minimization of a quadratic error cost function
similar to Equation 2. In this case, however, a
multi-dimensional minimization technique, such as
the downhill simplex method by Nelder and Mead,
must be used if the number of if-then rules is non-
trivial (i.e., greater than one). In all, there are
(p + 1) × k unknown coefficients, where p is the
number of multi-models (five, for this study) and k
is the number of if-then rules (two).
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Figure 3: Day 1 bias score for 8 thresholds averaged
over 15 Aug to 14 Sep, 2003 and from 40◦N to
40◦S. M1 through M5 denote the 5 multi-models,
EMN the regular ensemble mean, SUP the classic
superensemble, BCE the bias-corrected ensemble
mean, and FUZ the combination forecast based on
the fuzzy set method.

4 DATA INPUTS

The benchmark observed analysis used in veri-
fying the precipitation forecasts consists of both
TRMM (Tropical Rainfall Measuring Mission) and
SSM/I (Special Sensor Microwave Imager) data.
The TRMM Microwave Imager (TMI) 2A-12 rain-
fall algorithm (Kummerow et al. 1996 and 2000)
provides daily rain rate information within 35◦

latitude of the equator. Through the DMSP
(Defense Meteorology Satellite Program) satellites,
the NOAA/NESDIS (National Oceanic and At-
mospheric Administration/National Environmen-
tal Satellite, Data, and Information Service) SSM/I
algorithm (Ferraro and Marks 1995) covers the re-
mainder of the globe so that satisfactory coverage
of precipitation areas is attained within 55◦ latitude
of the equator on a daily basis. The data resolution
can be as high as 40 km, but for the purposes of
this research it is interpolated to a Gaussian grid
resolution of T–126, or about 104 km. For regional-
scale studies over land, rain gauge data may also
be utilized when available to assist in verifying the
precipitation forecasts.

The multi-model five-day global forecasts of pre-
cipitation from five different cooperating weather
services are initialized at 1200 UTC each day.
Those centers and models involved in this col-
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Figure 4: Average day 3 ETS for 15 Aug to 14 Sep,
2003.

laboration are as follows: (1) Bureau of Me-
teorology Research Center (BMRC) Atmospheric
Model (BAM), Australia; (2) Japan Meteorologi-
cal Agency (JMA) Global Spectral Model (GSM);
(3) National Centers for Environmental Prediction
(NCEP) Aviation Model (AVN); (4) Naval Re-
search Laboratory (NRL) Navy Operational Global
Atmospheric Prediction System (NOGAPS); and
(5) Recherche en Prévision Numérique (RPN)
Global Environmental Multiscale (GEM) Model,
Canada. The reader is directed to the model doc-
umentation from those centers for specific model
constructs. The output resolutions of the models
range from 0.8◦ to 2.5◦ latitude/longitude, but for
consistency, they are interpolated to T–126. The
final superensemble or fuzzy system precipitation
forecasts are therefore calculated using the above
inputs with the output also at T–126.

5 RESULTS

Using the superensemble and fuzzy set methodolo-
gies described above, five-day precipitation fore-
casts are generated to test the predictability of
global rain areas (QPF) at eight different threshold
intensities. Several flood case studies are also in-
vestigated. All combination forecasts are produced
as if in a real-time sense. In other words, obser-
vations are used only when available by time zero.
For each forecast valid time (days one, two, three,
four, and five), 65 training days are used in the
conventional superensemble while 35 are used for
the fuzzy method, except for the day one forecast
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Figure 5: Average day 3 bias score for 15 Aug to
14 Sep, 2003.

(where ten training days are used). These optimal
numbers are arrived at upon performing many in-
dependent forecast tests not described here.

Two different time periods in 2003 are selected
for QPF verification purposes: the full month of
February and a 31-day period from 15 August to
14 September. Spatially, all verification statistics
are given for a latitude belt of 40◦ either side of
the equator. This includes the global tropics and a
good portion of the U.S.

Two skill scores that are used extensively at
NCEP to verify QPF are also chosen in this study.
They are the equitable threat score (ETS) and the
bias score. The ETS is given as

ETS =
H −Hrandom

H + M + FA−Hrandom
, (11)

where

Hrandom =
(H + M)(H + FA)

N
. (12)

In these formulae, H corresponds to a hit, M de-
notes a miss, FA is the number of false alarms,
and N is the total number of forecast points. By
using the ETS, a forecast is rewarded for predict-
ing precipitation amounts at least equal to the ob-
served values for a given threshold. However, a pre-
diction is penalized for forecasting precipitation in
the wrong place as well as not forecasting it in the
right place for that same threshold. In addition,
there is an adjustment for hits associated with ran-
dom chance. The ETS may vary from -0.333 to
+1, where zero indicates no skill and one indicates
a perfect score.
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Figure 6: Average day 5 ETS for Feb, 2003.

The bias score, given in Equation 13, only com-
pares areas of predicted and observed rainfall (usu-
ally above a given threshold) and does not indicate
any degree of accuracy. A score of one indicates
no bias. Precipitation amounts are said to be un-
derforecast (overforecast) for a bias score of less
(greater) than one.

BIAS =
H + FA

H + M
, (13)

Figure 2 shows the average day one ETS over
the 80◦ wide latitude belt and for the time pe-
riod 15 August to 14 September, 2003. In this
figure, the forecasts based on the fuzzy set the-
ory are overall superior to the multi-models (M1
through M5) and the other ensemble techniques
(the regular ensemble mean, superensemble, and
bias-corrected ensemble mean). The BCE forecast
does show slightly greater skill at the five and ten
mm per day thresholds, however.

The average day one bias score for the same dates
is shown in Figure 3. Here, the fuzzy set the-
ory proves its worth again. Even though there is
an overestimation of precipitation for the low to
medium amounts, the bias scores for 0.2, 25, 35,
and 50 mm per day thresholds are close to the no-
bias forecast of one. Hence, this non-linear tech-
nique has its greatest impact in removing the very
low bias at the higher thresholds. This would seem
to indicate that heavy rain amounts would be more
realistically forecast over the global tropics com-
pared to the other models, with the exception of
model M3. The ensemble mean (EMN) may be suf-
fering from too much smoothing while the classical
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Figure 7: Average day 5 bias score for Feb, 2003.

superensemble, in its attempt to reduce “average
error”, is sometimes too conservative in its forecast
of heavy precipitation.

The day three skill charts, illustrated in Figures
4 and 5 and valid over the same latitude belt, show
many of the same features. Yet, for the higher
thresholds, the relative ETS skill advantage of the
FUZ predictions is lessened compared to day one.
Finally, the day five skill charts for the month of
February are shown in Figures 6 and 7. These
are very similar to the day five August/September
skills. The FUZ forecasts are once again, on aver-
age, equal to or superior than the remaining pre-
dictions for all but the five and ten mm per day
thresholds. There is still much room for improve-
ment, however, when considering the perfect fore-
cast ETS is unity.

On the other hand, the FUZ forecasting system
does show much higher ETSs for individual flood
events over smaller space and time scales. These re-
sults are not shown here, but they and other, more
in-depth skill score charts will be posted on the fol-
lowing FSU real-time NWP website in the coming
months: http://lexxy.met.fsu.edu/rtnwp.

6 SUMMARY AND FUTURE
WORK

The preceding results show that a post-processing
multi-model combination algorithm based on fuzzy
set theory is a viable choice for ensemble forecast-
ing. At the very lowest 0.2 mm per day thresh-
old and also the at the higher rainfall thresholds is
where the greatest improvement in skill is noticed.



That combined with the near no-bias forecasts at
the 25 mm per day level and up gives an overall su-
perior forecast on average over the global tropics.
This is especially true on day one of the forecast.
Further results broken down by region and season
are being prepared for a more in-depth analysis, as
well as flood event case studies.

Furthermore, with assistance and guidance from
Dr. Ana Barros, hydrology simulations are taking
place with a state-of-the-art distributed numerical
model employed to predict basin-scale streamflows
(river levels). By using the rainfall/atmospheric
data from the both the fuzzy set theory forecast and
from the Florida State University Global Spectral
Model (FSUGSM), the goal is to more accurately
predict basin-scale river flooding on time scales of
two to five days in advance. Preliminary results for
the Limpopo River Basin over southeastern Africa
appear quite promising.
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