
11.1 HOW TO MAKE AN INTERNATIONAL METEOROLOGICAL WORKSTATION
PROJECT SUCCESSFUL

Hans-Joachim Koppert 1
Deutscher Wetterdienst, Offenbach, Germany

Torben Strunge Pedersen
Danish Meteorological Institute, Copenhagen, Denmark

Bruno Zürcher
MeteoSwiss, Zürich, Switzerland

Paul Joe
Meteorological Service of Canada, Toronto, Canada

1 Corresponding author address: Hans-Joachim Koppert, Deutscher Wetterdienst, Kaiserleistr. 42, 63067
Offenbach, Germany; email: Hans-Joachim.Koppert@dwd.de

1. INTRODUCTION

The Deutsche Wetterdienst (DWD) together
with the German Military Geophysical Service
(GMGO) started a new Meteorological Workstation
project (NinJo) in 2000. Soon thereafter Meteo-
Swiss and the Danish Meteorological Institute (DMI)
joined the project. Just recently, the Meteorological
Service of Canada (MSC) decided to become a
member of the NinJo consortium.

The aim of the project is to replace aging
workstation systems (Kusch 1994, Koppert 1997)
and to provide an unified environment to support
forecasting and warning operations. Besides the
development of new, or the integration of recently
developed applications, it is necessary to provide
most of the capabilities of the existing systems.
Forecasters are conservative and often would like
to stay with their old tools. So we are facing an
enormous pressure to implement a system that
does (nearly) everything better.

Since NinJo is a multi-national project with 5
partners, diverse hardware and software infra-
structures, distributed development sites, and local
meteorological needs, a strong requirement is to
built the software with a sound software architecture
that could easily be adapted to the needs of the
partners. But it’s not only the software architecture
that assures the success of an international
workstation project, it is also the management of the
project. The management has to make sure that all
requirements are incorporated, that resources are
effectively used and the communication among the
sub-projects is functioning effectively.

2. THE NINJO WORKSTATION

User requirements were collected and
structured at the very beginning of the project.
These high level requirement and specifications are
the basis of the agreement between the NinJo

partners. In the course of the project, they are
refined when the respective sub-project work-
packages are initiated.

Figure 1: A NinJo window with 3 scenes: gridded
data (left), surface observations (top right), satellite
image (bottom right)

The following list shows NinJo’s main features :

� Integrated 2D and 3D visualization of point
data including: surface observations,
soundings, lightning data; gridded data;
satellite and radar imagery; geographical
data; and bulletins

� Batch chart production
� Data decoding and management
� Graphical editor
� Data modification - both point and gridded

data
� Monitoring and alerting for observations

and NWP data

� Support for multiple windows with data
layering, multiple screens, and animation

Expected areas of operation: Guidance,
warning/consulting, research, climatology,
reports, commercial and private customers

3. RATIONALE FOR WORKING TOGETHER

The NinJo partners have a very long history of
developing meteorological applications. Based on
this history, there are different rationales for working
together on a large and complex project like NinJo.

At DWD and GMGO, several Meteorological
Workstation Systems were developed from the
early nineties. These Systems became difficult to
maintain and upgrade. Furthermore, they lack
required features such as GIS support, advanced
analysis functionality, data modification modules,
seamless integration with 3D visualization and
interactive chart modification into one single
application. In 1999, a strategic decision was made
to replace these aging systems and to move away
from dedicated hard and software environments. In
order to broaden the project’s pool of expertise and
to strengthen the resources, DWD and GMGO
happily welcomed DMI, MeteoSwiss and MSC as
new partners

The DMI started its first meteorological
workstation project in 1990. Based on a cost /
performance evaluation and the money available
DMI selected SUN Sparc workstations and started
to develop applications. With very limited man
power, an approach was chosen where one
application was developed for each data type
facilitating fast operational deployment to
forecasters who at the time had no such tools at all.
During the 90’s, DMI moved from Sparc to Intel
based Solaris OS workstations and then started to
move towards Java. After a decade with
workstations, DMI saw a large part of the
development resources going into maintenance, an
uncertain OS and hardware future, a requirement
for data integration in the applications.

With the resources available, the options were
to port existing applications (most still in Motif) to
Linux or acquire a “new” system that could provide
the data integration (e.g. Horace). Developing a
new DMI system from scratch was out of the
question. With the option of participating in NinJo, it
was easy to reach the conclusion for the DMI to
make a final Solaris Intel software release, join
NinJo and be part of a real meteorological
workstation project.

The meteorological software currently used at
MeteoSwiss consists of many, rather small and
isolated applications which were increasingly
difficult to maintain. In the past decade, there have
been efforts to develop an in-house integrated
solution, but there were too few resources available
to accomplish this task in a reasonable time.
Embedding commercially available systems into the

existing hardware and software environment would
likewise be difficult to achieve. However, the
participation in the NinJo project provided
MeteoSwiss with a long needed, integrated
meteorological workstation.

Similarly, the MSC has tried to
build/buy/develop an integrated workstation for
many years to replace aging, inadequate systems
while including new science and technology. It is a
big investment, a high risk venture, a difficult project
to manage and very difficult to clearly state the
requirements and specifications A new driving
impetus for the MSC was the restructuring to fewer
offices which assumed that the new and maturing
science and computer technology - models,
algorithms, visualization, software, processing,
telecommunications, data storage – could be
leveraged (GEM refer; Scribe ref; Joe et al, 2002;
FPA).

The advent of affordable high power graphical
workstations in the late eighties led to the
development of many independent but very
effective forecast applications. The code was
difficult to maintain or upgrade because they were
designed for specific applications and situations and
lacked a software or data architecture or an overall
concept that would enable it to evolve. Even newly
developed radar software, such as CARDS
(Lapczak et al, 2001; Joe et al, 2002), soon hit data
access roadblocks. So, a well designed software
architecture and data infrastructure is needed.

Regardless of which system was the starting
point for development, it would require substantial
modification and development to meet the MSC
vision. So, the driving , requirement was to develop
from a solid IT and data foundation. Unique in
MSC’s IT assessment of software was the NinJo
system - it was being designed based on sound
software principles -. functional components were
isolated from each other and there was an
encompassing architecture

4. IT SUCCESS FACTORS

The philosophy of NinJo is to provide a building
kit in order to assemble tailored applications from
NinJo components. A flexible programming model is
needed to allow NinJo partners to develop their own
application without hampering each other. With this
concept, it is possible that each partner can easily
adapt NinJo to their own needs.

Before we discuss the key design principles of
portability, client layer patterns, generic frameworks,
and easily manageable data sources, we have to
explain our NinJo concept of a generic
Meteorological Workstation. This concept is one of
the keys to success!

4.1 A Generic Meteorological Workstation

A generic Meteorological Workstation should
be able to run easily at any meteorological institute

of the world. It doesn’t assume or prescribe any
hardware or data infrastructure. It relies solely on
standards for input and output of data and/or
products. WMO codes like Synop, Temp, Metar,
BUFR or GRIB (to name a few) should be able to
be ingested as well as any vector or image format.
It is not possible to interface with all back-end
systems immediately, but, the architecture of the
workstation should be capable of implementing the
connection with reasonable effort.

A multi-national Meteorological Workstation
can be successful only if the technical pre-requisites
of a generic workstation are addressed early in it’s
development.

4.2 Portability

The NinJo partners run their current systems
on a variety of hardware with different operating
systems. When NinJo becomes operational, we
expect at least 3 operating systems to be used:
Linux, Solaris, and Windows. In the very beginning
of the project Java was chosen as the computing
platform. It promised to be independent from the
underlying hardware and from the operating
system. Until now we haven’t encountered any
serious problems with Java’s portability. One of the
problems that one might face is the availability of
certain APIs. As an example on the Mac OS, there
is no Java3D nor Java Advanced Imaging (JAI),
although the latter could be used without native
acceleration.

The main concern with large Java systems was
performance. The evaluation of mission critical
components of the Java platform was done in detail
early in the project (Koppert, 1999). We found that
performance is not an issue, even numerical
computations can be done in Java. The decision to
go with Java meant that we couldn’t reuse
anything, everything had to be rewritten from
scratch including peripheral modules like decoding.

4.3 Building Client Applications

Every NinJo partner wants to be able to build
their own versions of NinJo, ranging from simple
satellite viewers to full blown workstations.

We call a frame, that displays data, a scene. A
scene can display data in several stacked layers.
Layers are visualization applications of point data,
gridded data, imagery, GIS-data and so on. The
configuration of these layers can be done during run
time or can be loaded from XML-configuration files.
It’s obvious that the configuration framework is
another key component for success. Everything that
is “configurable” can be made persistent. This
framework makes the implementation of “favorites”
and the “undo” functionality possible.

The NinJo project had to provide a framework
that allows the construction of a NinJo client. The
design pattern used to fulfil these requirements is
called PAC (Presentation Abstraction Control). PAC

is a hierarchy of co-operating agents following the
Model View Controller (MVC) design pattern. This
agent hierarchy is configurable through the above
mentioned configuration framework. There is a strict
decoupling of the agents, allowing the layers to be
independently developed. Each layer manages it’s
own data. The view of the layer provides GUI-
components to be integrated by a top-level agent,
the “master of the scene”. This top level agent
(called the Layer Container) is also responsible for
global event handling like the changing of the
geographic or the time context.

Figure 2: The client architecture with PAC
Framework, MVC driven layer agents, configuration
framework and client access layer

With this approach, it is feasable for every
NinJo partner to develop their own layer
independently, if the existing layers are insufficient.

In an international project, it is also necessary
to consider internationalization. Java offers an
internationalization API that allows NinJo
applications to be localized quickly.

4.4 Managing Data Sources

The client access layer (CAL) is the only entry
point for a NinJo client to access any meteorological
data. This framework is designed in a generic way,
such that it handles arbitrary types of data (like
gridded data, observational data etc.). It also
manages various kinds of data sources, like data
servers or local file systems.

All data sources have to provide information
about their current contents in a well defined way.
This is done in a meta data tree which is similar to a
directory tree where a leaf in this tree can be
identified with a particular data set from a particular
data source

Layer Specific Access Layer

Data Container of the Layer
P

A
C

 L
ay

er
 F

ra
m

ew
or

k

La
ye

r-
G

U
I

Layer Specific Visualization

Visualization Library (Vislib)

Layer-
AgentC

MV

Layer

C
onfiguration Fram

ew
ork

Client Access Layer Framework

Data sources are required to implement the
same service interface for similar data types. It
defines all “getter” methods to access data of this
type.

If a NinJo client wants to work with a specific
data type, the client has to query the CAL for the
contents of the corresponding meta data tree. By
this means, the client is able to set up a request (i.e.
to define the meta data) for a data set and submit it
together with additional access parameters to the
CAL. All data sources matching the request, are
determined and the load-balancing and fail-over
strategies decide which of the data sources will be
queried for the data.

Since the data source implementation class is
configurable, it is possible to write adapter classes
which connect to existing or legacy data sources
used by other meteorological applications. This is of
particular interest to all NinJo partners, because
they are able to connect to back-end systems
outside the NinJo server/data tier or to perform
comparisons between NinJo and other systems.
With the aid of these adapter classes it’s also
possible to use different middleware
implementations. Therefore, data can be read from
the local disc (flat file), through a socket stream
(legacy software), or using Corba, the NinJo
standard.

The ability to access local file data by means of
the CAL has already proven to be invaluable during
development. The client layer developer has a fast
way to work with real data, while the data server is
being developed. Researchers can exploit the file
access feature to quickly display their data. Since,
both data sources implement the same service
interface, all that is needed to switch from the file
system to the data server is to adapt the name of
the implementation class in the configuration of the
CAL.

4.5 Data Servers

A generic Meteorological Workstation needs to
be able to import and store all sorts of standardized
data. The NinJo data server infrastructure consists
of several types. One data server hosts a set of
data types with common storage and access
characteristics. Examples are point data servers,
gridded data servers, or product data servers. All
data servers follow one generic design to facilitate
the implementation of new data types.

NinJo servers import data from the file system
and from a decoding component. File import allows
for only a few possibilities, like gridded data as
GRIB-files or certain geo-referenced image
products. The decoding component, called
GLOBUS, imports all observational data (ASCII or
BUFR), and sends it after conversion to the import
service of the point data server. NinJo partners
who don’t want to use the GLOBUS decoding
system, can utilize the import service directly,

because it supports external data formats. All data
is transformed, for performance reasons, into
special internal formats. We use netCDF for gridded
data, multi-resolution/multi-tiled geoTIFF for image
products, and optimized byte arrays for point data
objects.

Legend
Sub SystemTier CommunicationCarrier System

NinJo
Data
Server

NinJo
Client

C
lie

nt
 T

ie
r

Se
rv

er
 T

ie
r

Ex
te

rn
al

 S
to

ra
ge

(e
g.

 A
rc

hi
ve

)

Client
Storage

Distribution

Batch
Control

DatabasesEx
te

rn
al

 S
ys

te
m

s

Export
Services

Se
rv

er
 In

fra
st

ru
ct

ur
e

Co
m

po
ne

nt
s

Se
rv

er
M

an
ag

er

W
at

ch
do

g

Decoding

JDBC

NinJo
Batch

Corba Naming and
Notification Service

Se
cu

rit
y

Se
rv

ice Grid
Server

Data Storage

Radar Server
(curr. Product)

Data Storage

Poin t
Server

Data Sto rage

Sat Server
(Product)

Data Storage

Import
ServicesSatPoint RadarGrid

Corba (IIOP) or File Transfer

Corba (IIOP)

Data Types

Sat Data

Point Data

Radar Data

Grid Data

Products

Figure 3: The NinJo tiers. Shown are the most
important servers with their import/decoding
components

In order to make the server as generic as
possible, the design makes no assumptions on the
middleware. Servers, like all other NinJo
components, are configurable. Server configuration
will be supported by graphical tools

5. THE MANAGEMENT OF THE NINJO
PROJECT

The success of an international workstation
project not only depends on the technical design but
also on the management of the whole process. Very
few team members had experiences from previous
international software development projects. So we
were facing a real challenge. Currently, NinJo is a
project consisting of 5 institutes and 2 consulting
companies. Development takes place at 8 sites.,
with roughly 50 people involved. This team has to
be “developed” and “nutured””, the flow of
information has to established, and the
development of the software itself has to be
formalized.

5.1 The Project Organization

With so many diverse partners and
requirements, good software development practices
- requirements gathering, documentation, user
testing, project planning, estimation, scheduling,
reviews, evaluations - have to be in place. They
can not be ignored. Requirements are gathered
amongst the consortium members and the work is
assigned to individual teams. This allows access to
a much larger pool of expertise and a much better

critical review of the software. A big advantage of
working within an international consortium is that
petty issues that can bog down a project disappear
and national pride provides incredible motivation.
There is very strong commitment and support at all
managerial levels within each organization for the
project – often a key success factor.

The most important organizational body is the
steering committee. It is responsible for the
assignment of resources and the prioritization of
tasks. Every partner appoints one member to
protect the partners interests. The project office is
located in Offenbach

Although a lot of our Danish partners
understand German, we have switched the working
language from German to English after DMI joined
the project. This was “very much appreciated” by
the MSC. The addition of MSC created additional
issues – distance, travel and time differences. With
telephone, email and telecommunication networks,
the distance and time is not such a hindrance.
Such a substantial project would not have been
contemplated 10 years ago before the advent of
email and the internet. In fact, the 6+ hours of time
difference promotes better planning and better
communication as one tries to prevent
emergencies.

Very early in the project it became clear that we
had to minimize the amount of communication
between the different sites. Therefore we
concentrated work packages to single sites. The
Berlin site is responsible for the PAC framework,
the radar layer is handled in Toronto. This is
analogous to good software practices – interfaces
are clear, thin and well defined. There is only one
team that consists of members from all partners -
the Design team. They meet regularly to discuss
software design issues in order to be able to
integrate all requests from the partners. There is
one chief designer to make sure that there are no
diverging design concepts.

Our design principle, the separation of basic
infrastructure components (framework) and specific
applications (layers), makes software development
“across the Atlantic” possible. Even though the
amount of communication is reduced during the
development of a specific application or layer, it still
is very intense during the specification phase.

5.2 The Integration of the User

Since objective performance figures, like
reduced lead times, are not available at this stage
of the project, the forecaster is the ultimate judge of
NinJo’s success.

We have integrated the forecasters from the
very beginning. They helped formulate the
requirement specifications and are integrated in the
refinement phase of the respective work packages
when we deal with GUI-components.

The most important NinJo project body is the
evaluation group, where forecasters from every
partner get together to test releases. The fruitful
exchanges of ideas within this group helps to
enhance the functionality. Through the participation
of forecasters from each partner, the view on how to
present NinJo to the forecaster gets broadened. In
the last review, forecasters indicated the need to
have quick access to their use cases without
clicking too much - the GUI was too cumbersome.
This lead to a window containing application (layer)
specific panels with shortcut buttons. A satellite
panel offers for example: visible, infrared, water
vapor single channel, and multi channel images.
Now the most important use cases are only on click
away.
 Through the evaluation team, forecasters
recognize that they are an important part of the
development process and that their contributions
will make NinJo an even better tool.

5.3 Making the Project Work Technically

The most important tool that’s needed for
developing software in distributed teams is a
configuration (CM) management tool. CM tools
keep a history of the changes, allow to share work
and source code easily. We have chosen a
commercial product, called Perforce, which is client
server based. Perforce is very fast, since it’s
metadata driven. We have established a central
repository in Offenbach (DWD’s central office) that
is accessed easily by any team member. Perforce
not only stores sources but also the project
documents. A working, easily accessible repository
with a reasonable depot structure is one of the
prerequisites of successful software development.

The choice of IDEs is no longer an issue, there
are a many good ones around: Eclipse, IntelliJ, or
Netbeans. TogetherJ is used to develop the design
and to do formalized code testing. With the help of
TogetherJ, one can keep source code and UML-
diagrams in agreement with each other. Bugzilla is
used to track bugs and to enter enhancement
requests. Bugzilla is also implemented in Offen-
bach. Each team member has access.

6. STATUS OF THE NINJO PROJECT

NinJo 1.0 will be introduced operationally late
2004/early 2005. NinJo 0.7, which is the most
recently evaluated version, features most of the
required data types and servers:

� Interactive multi window, multi screen
display

� Batch
� Point data (FM12/13/15)
� Gridded data
� Geo-vector and geo-raster data

� Satellite imagery (geostationary satellites
only)

� Radar imagery (image products only)
� Cross Sections (Gridded data only)
� Stream lines (Gridded data only)
� Diagrams
� 3D-Visualization (Gridded data only)

There will be two more releases before the 1.0
release. One of these will be evaluated by
forecasters. Short term activities include:

� interactive chart production,
� data modification functionality,
� integration of MSC’s radar-software

(CARDS),
� the addition of several new layers (e.g.

lightning) and associated data servers,
� alerting and monitoring

7. REFERENCES

Greaves, Brian and Robert Paterson, Ros Trafford,
Norbert Driedger, Paul Joe, Norman Donaldson,
1999: Development of Shorter Range Forecasting
Tools in the Forecast Production Assistant (FPA).
Fifteenth International Conference on Interactive
Information and Processing Systems for
Meteorology, Oceanography and Hydrology, Dallas,
Texas.

Joe, P., Marie Falla, Paul Van Rijn, Lambros
Stamadianos, Trevor Falla,
Dan Magosse, Lavinia Ing and James Dobson,
2003: Radar Data Processing for Severe Weather
in the National Radar Project of Canada, 21st Conf.
SELS, San Antonio, TX, AMS, 221-224.

Kusch W., H.-J. Koppert, and M. Pogoda, 1994:
The Meteorological Application and Presentation
System (MAP) of Deutscher Wetterdienst (DWD),
Tenth International Conference on Interactive
Information an Processing Systems for
Meteorology, Oceanography, and Hydrology,
Nashville, Amer. Meteor. Soc.,200-203

Koppert, H.-J., Schröder, F, 1997: 3D-Visualization
at DWD, Sixth Workshop on Operational
Meteorological Systems, Reading, UK, ECMWF
Workshop Proceedings

Koppert, H.-J., Haase, H., Gehrke, O., Lehmann,
S., 1999: Lessons Learned from Developing a
Prototype Meteorological Workstation with Java,
Seventh Workshop on Operational Meteorological
Systems, Reading, UK, ECMWF Workshop
Proceedings

Lapczak, S., E. Aldcroft, M. Stanley-Jones, J. Scott,
P. Joe, P. Van Rijn, M. Falla, A. Gagne, P. Ford, K.
Reynolds and D. Hudak, 1999: The Canadian
National Radar Project, 29th Conf. Radar Met.,
Montreal, AMS, 327-330.

Verret R., D. Vigneux, J. Marcoux, R. Parent, F.
Petrucci, C. Landry, L. Pelletier and G. Hardy, 1999:
Automation for an improved efficiency.
Prerprints15th International Interactive Information
and Processing Systems (IIPS) for Meteorology,
Oceanography and Hydrology, AMS, Dallas,
Texas, Janauray 10-15 1999, 72-75.

