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1. INTRODUCTION 
 
 The SPC/NSSL (Storm Prediction 
Center/National Severe Storms Laboratory) 
Spring Program is a collaborative exercise 
held in Norman, OK during the peak severe 
convective weather season.  It brings together 
a variety of meteorologists from research and 
operational communities to investigate 
specific applied research problems and to 
promote interactions between the two 
communities (Kain et al. 2003a).  The 2003 
Spring Program was anchored by SPC 
forecasters and NSSL/CIMMS (Cooperative 
Institute for Mesoscale Meteorological 
Studies) researchers and rounded out with 
visiting scientists from numerous institutions, 
including the Environmental Modeling Center 
(NCEP/EMC), the Forecast Systems 
Laboratory, the Norman, OK and White Lake, 
MI NWS Forecast Offices, the University of 
Arizona, the University of Oklahoma, the 
University of Washington, Iowa State 
University, the Massachusetts Institute of 
Technology, the United Kingdom 
Meteorological Office, and the Meteorological 
Service of Canada.  In addition, observers 
from COMET and USWRP participated.   
 Subjective verification of numerical 
weather prediction models has been an 
integral part of the Spring Program for several 

years (Kain et al. 2003b) and 2003 was no 
exception.  This year subjective verification 
methods were used to evaluate two promising 
applications of numerical models in 
forecasting severe weather:  1) the use of 
Short-Range Ensemble Forecast (SREF) 
prediction systems, and 2) the use of high-
resolution deterministic models.  This paper 
will focus on the latter application as the 
former is discussed by Levit et al. (2004).   
 The objective of the deterministic model 
evaluation during the 2003 Spring Program 
was to compare the performance of three 
experimental model configurations to two 
“benchmark” models that are used regularly at 
the SPC.  It is hoped that the results of this 
subjective verification exercise will provide 
insight into the utility of these models for 
severe weather forecasting and also provide 
guidance for numerical model developers.   
 
2. METHODOLOGY 
 
 Methods used during the subjective 
verification of deterministic models in the 
2003 Spring Program were very similar those 
documented by Kain et al. (2003b).  In 
particular, model output fields were 
subjectively compared to observations of 
convective initiation and evolution using a 
rating scale from 1 to 10, with 1 being a very 
poor forecast and 10 being excellent.  Ratings 
were assigned using a web-based form. __________________________________ 
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 During this year’s program, the rating 
process was limited to precipitation forecasts.  
Although precipitation is often the last model 
output field to be examined by SPC 
forecasters, it is well suited to subjective 
verification because its general character is 
readily verifiable with radar data.  In assigning 
forecast ratings, teams were instructed to 
focus on this character, including the timing, 
location, orientation/configuration, movement, 
etc. of precipitation fields, rather than on 
accumulated amounts.  Radar data used in this 
process were composited over the same time 
period that the precipitation was accumulated 
in the model, with the radar composite 
displayed as the maximum reflectivity at each 
display pixel over the period in question.  For 
most of the ratings, a 3 hour period was used, 
although a subset of the data (see below) was 
collected using 1 hour intervals. 
 The operational Eta model (e.g., Black 
1994; Janjic 1994) and the EtaKF (Kain et al. 
2003c) were considered benchmarks in the 
2003 Spring Program.  These models are used 
routinely at the SPC and have been part of 
subjective verification efforts in the recent 
past (Kain et al. 2003b).  Output from these 
models was compared to forecasts from 
NCEP’s NMM (Janjic et al. 2001), a non-
hydrostatic derivative of the Eta model that is 
currently being run operationally with 8 km 
grid spacing in EMC’s “HiRes Window” 
production slot (G. DiMego 2003, personal 
communication) and two configurations of the 
WRF (Weather Research and Forecasting) 
model (Michalakes et al. 2001).  The first 
WRF configuration used 12 km grid spacing 
over a CONUS domain (hereafter WRF12), 
with convection parameterized by the Kain-
Fritsch scheme (Kain 2004).  The second 
WRF run used a re-locatable domain, 1200 
km on a side with 3 km grid spacing and no 
parameterized convection (hereafter WRF03).  
This high resolution WRF domain was 
centered over the area of greatest concern for 

the SPC, determined each morning in 
consultation with the SPC Lead Forecaster on 
duty.  The subjective assessment of all models 
was limited to this regional domain, using 
display software to zoom in on the common 
area for the models with larger areal coverage. 
 All models were based on the same initial 
conditions, namely those of the 1200 UTC 
operational Eta model, but the effective 
resolution of the initial data varied 
significantly from model to model.  The 
NMM grid was populated by interpolating 
directly from the Eta’s native 12 km grid, but 
the other three runs were initialized from 
standard NCEP output grids.  Specifically, the 
EtaKF (with 22 km spacing) was initialized 
from the 212 grid (40 km spacing), while both 
configurations of the WRF were populated by 
interpolating from the 211 grid (80 km 
spacing).  Obviously, these procedures for 
generating initial conditions were not optimal, 
especially for the WRF runs in which initial 
data were defined on much coarser scales than 
the model configurations were capable of 
resolving.  This initial condition problem 
likely handicaps model performance, but the 
magnitude of this disadvantage has not been 
quantified. 
 
3. RESULTS 
 
 Subjective verification exercises were 
planned for a total of thirty days during the 
2003 Spring Program (six weeks at five days 
per week).  Of these thirty days, forecasts 
from all five models were available on twenty-
one days, or 70% of the time.  The initial 
focus of the statistical analysis is on these 
twenty-one days.  Two forecast periods were 
evaluated each day; the 1800-2100 UTC 
period and the 2100-0000 UTC period.  Thus, 
a total of forty-two forecast periods were 
surveyed for the complete set of five different 
model forecasts. 



 Results from this survey are expressed in 
two different ways.  First, mean values based 
on the raw ratings are computed.  These 
values provide useful information about 
subjective impressions from the forecast 
teams, including inferences about how much 
better or worse one forecast is perceived to be 
compared to another (on average). These 
results can be misleading, however, because 
the benchmarks used to gauge model 
performance vary from forecast to forecast.  
For example, a perfect forecast for one event 
might turn out to be a prediction of no 
precipitation, while the next event may require 
extremely realistic timing and evolution of 
complex mesoscale convective structures for 

perfection.    
 To compensate for this inconsistency in 
absolute scale, a second analysis that is based 
on the relative rankings only is provided.  
These numbers are generated by ranking raw 
scores for each forecast period according to 
highest (rank value equal to the number of 
model forecasts in the comparison), second 
highest (rank value equal to number of 
forecasts minus 1), etc.  In the case of ties, a 
mean number is assigned.  For example, if for 
a particular forecast period one model out of 
four was given a rating of 8, two received 6s, 
and two received a 3s, the relative rankings 
would be 5, 3.5, 3.5, 1.5, and 1.5, respectively.   
 For each method, paired t-test scores (e.g., 

 
 18 - 21 UTC 21 - 00 UTC 

DATE ETA ETAKF NMM WRF12 WRF03 ETA ETAKF NMM WRF12 WRF03 
29-Apr 7 7 7 6 4 6 3 7 2 4
30-Apr 7 6 7 7 6 6 5 5 3 7
1-May 4 2 4 4 1 1 1 1 2 0
4-May 4 6 3 5 5 5 5 2 7 7
5-May 5 5 5 5 4 4 6 4 3 6
6-May 5 6 6 6 5 6 3 5 3 4
7-May 2 2 2 2 1 5 5 3 4 4

11-May 2 4 2 4 3 4 6 3 7 5
12-May 4 4 5 4 3 5 4 6 3 3
13-May 4 5 4 5 2 3 5 4 6 2
14-May 7 8 6 7 2 7 8 9 6 2
15-May 8 8 8 6 7 8 7 8 6 6
20-May 5 6 5 7 3 2 4 2 6 2
21-May 5 6 4 4 1 7 8 6 5 1
22-May 3 6 2 7 7 1 4 1 6 7
28-May 5 7 6 6 9 6 7 5 6 8

1-Jun 4 6 5 4 1 4 7 6 4 1
2-Jun 3 7 4 8 2 6 3 7 4 2
3-Jun 4 5 3 6 2 3 7 5 3 1
4-Jun 7 3 5 6 2 4 6 3 5 1
5-Jun 5 8 7 3 4 6 5 6 3 3

           
Number 21 21 21 21 21 21 21 21 21 21
Average 4.7619 5.57143 4.7619 5.33333 3.52381 4.71429 5.19048 4.66667 4.47619 3.61905
 
Table 1.  Subjective verification ratings for the 21 days on which all 5 models were available. 



Wilks 1995) were computed in order to assess 
the statistical significance of any differences.  
A t-test score of 0.05 indicates that differences 
are significant at a 95% confidence level, and 
this value is often used as a threshold to 
distinguish between significance and 
nonsignificance.  This threshold is used as a 
reference point, but a more general usage of t-
test scores is emphasized, such that lower 
values imply a greater probability that 
differences are real and higher values suggest 
differences may not be real (see Nicholls 
2001). 
 
 3.1  Three-hourly forecasts:  All five models. 
 
 Ratings from the days when all five 
models were available can be seen in Table 1.  
All models earned a wide range of ratings and 
no model was consistently rated worse or 
better than the others, but certain trends are 
clearly discernible.  When averaged over all 
rating periods, the EtaKF stands out with 
higher scores while the WRF03 appears to be 
an outlier on the lower end of the scale (Fig. 
1a).  Results from paired t-tests (Table 2) 
confirm the significance of these differences.  
Pairings between various combinations of the 
WRF12, Eta, and NMM produce t-test values 
greater than 0.6, strongly suggesting that none 
of these models was significantly better or 
worse than the others, on average.  In contrast, 
when EtaKF or WRF03 output is paired with 
any of the other forecasts, t-test scores are 
quite low, indicating a high likelihood that the 
differences are real.  When the comparison is 
done in terms of rank instead of rating, the 
results are qualitatively unchanged.  In 
particular, the order from highest to lowest is 
the same (Fig. 1b) and t-test scores indicate 
comparable levels of significance.  
 Additional insight into these results comes 
from examining the correlation between 
different elements.  Although all models used 
the 1200 UTC Eta for initial conditions, they 
clearly followed different paths in predicting 

the evolution of precipitation fields over the 
ensuing 12 h.  Inter-model correlation was 
strongest between the Eta and NMM, with a 
correlation coefficient of 0.822 (Table 3).  
Forecasts from these two models received the 
same rating on many days and differed by as 

 

 
 
 Fig. 1. Mean a) ratings and b) rankings for all 
times shown in Table 1.   

a 

b 

Paired t-tests Model Pairings 
Raw Ratings Rankings 

Eta - EtaKF 0.034 0.033 
Eta – NMM 0.893 0.854 

Eta – WRF12 0.622 0.883 
Eta – WRF03 0.005 0.002 
EtaKF - NMM 0.030 0.035 

EtaKF – WRF12 0.086 0.042 
EtaKF – WRF03 <0.001 <0.001 
NMM – WRF12 0.628 0.816 
NMM – WRF03 0.015 0.010 

WRF12 – WRF03 0.001 0.002 
 
 Table 2.  Paired t-test values for the data shown 
in Table 1 



many as 3 rating points on only one day 
(Table 1 and Fig. 2a).  In comparison, Eta and 
EtaKF forecasts were given very different 
ratings on numerous days and showed only a 
moderate correlation (Tables 1, 3; Fig. 2b).  
Other correlations were generally weak to 
moderate.   
 These differing correlations appear to be 
related to variations in model physics and, 
perhaps to a lesser extent, model dynamics.  
For example, the NMM and Eta models use 
essentially the same physics package (Janjic et 
al. 2001), consistent with their strong 
correlation in ratings.  The EtaKF, configured 
with a different convective parameterization 
but otherwise the same physical 
parameterizations as Eta and NMM, shows a 
moderate correlation to both of these models. 
The WRF12, using a physics package that is 
completely different from Eta and NMM, is 
only weakly correlated with these models, but 
it is moderately correlated with EtaKF, with 
which it has the KF convective 
parameterization in common.  The WRF03, 
with no convective parameterization, is 

weakly correlated with all other models.  It 
shows a somewhat stronger correlation with 
WRF12, consistent with the similarity in 
physics and dynamics in these two 
configurations of WRF.  
 Intra-model changes between consecutive 
forecast periods are also revealing.  The 
WRF12 showed the least consistency between 
first and second periods, with a correlation 
coefficient of only 0.174 (Table 3).  Moreover 
the average rating of the WRF12 forecasts 
dropped by nearly a full point from one period 
to the next.  This appears to reflect a problem 
that was frequently noted with the WRF12, 
namely that the areal coverage of WRF12 
precipitation shrunk dramatically and 
unrealistically as solar heating in the model 
waned late in the day.  Work is underway to 
understand the reasons for this excessive 
response to the diurnal cycle.  The EtaKF 
ratings followed similar, but less dramatic 
trends from first to second period, dropping by 

Correlation between Forecast Ratings 
Model Runs Compared Correl. Coeff. 

Eta - EtaKF 0.437 
Eta – NMM 0.822 

Eta – WRF12 0.186 
Eta – WRF03 0.255 

EtaKF – NMM 0.485 
EtaKF – WRF12 0.474 
EtaKF – WRF03 0.262 
NMM – WRF12 0.022 
NMM – WRF03 0.094 

WRF12 – WRF03 0.319 
Eta:  1st vs. 2nd fcst pd 0.490 

EtaKF:  1st vs. 2nd fcst pd 0.303 
NMM:  1st vs. 2nd fcst pd 0.632 

WRF12:  1st vs. 2nd fcst pd 0.174 
WRF03:  1st vs. 2nd fcst pd 0.868 
 
Table 3.  Correlation for both inter-model and 
intra-model comparisons 

 

 
 

Fig. 2.  Scatterplots of a) NMM vs. Eta and b) 
EtaKF vs. Eta for all times shown in Table 1 

a

b



about 0.4 points and showing only weak to 
moderate correlation.  Since the EtaKF and 
WRF12 both use the KF convective 
parameterization, these inconsistencies could 
be related to this scheme.  Ratings for the Eta 
and NMM also dropped for the later forecast 
period, but this decline was minimal.  These 
two models appeared to have more temporal 
consistency than the EtaKF and WRF12, but 
still only a moderate correlation between first 
and second periods.   
 Despite having the lowest ratings overall, 
the WRF03 demonstrated the greatest 
consistency between forecast periods.  In 
addition, it was the only model to have a 
positive trend with time.  These results 
suggest that the processes discussed by 
Warner and Hsu (2000) may be operative in 
the other forecasts, i.e., in the model runs 
using parameterized convection.  In particular, 
Warner and Hsu (2000) showed that 
feedbacks from parameterized convection can 
disrupt subsequent convective initiation over 
regional scales within a few hours of the 
initial activation.  Although they examined 
this effect in the context of parameterized 
convection on large grids affecting explicitly 
resolved convection within embedded high-
resolution grids, the same principles are likely 
to hold on a single grid with parameterized 
convection.  Parameterized convective 
feedbacks introduce local imbalances on the 
model grid, spawning gravity waves that 
propagate into the surrounding environment 
quite rapidly.  The deepest gravity wave mode 
induces subsidence over a deep layer and 
propagates at ~30 m s-1 (e.g., Mapes 1993).  
As shown by Warner and Hsu, these waves 
can strongly affect the surrounding 

environmental stability and humidity, two 
important factors in both the BMJ and KF 
trigger functions (Baldwin et al. 2002; Kain et 
al. 2003c), as well as the vertical velocity, 
which is a key element in the KF trigger.   
 The impact of this process is difficult to 
quantify, or even confirm.  Nonetheless, we 
speculate that it is operative in daily forecasts 
with parameterized convection.  Ironically, the 
KF scheme seems to be most susceptible to 
this problem (Warner and Hsu 2000), yet it is 
associated with the best forecasts of 
convective initiation and evolution in this and 
other studies (Kain et al. 2003b).  Moreover, 
while model forecasts without parameterized 
convection may be immune to this problem, 
they performed significantly worse, on 
average, than the other forecasts in this study.   
 On a final note for this dataset, it is worth 
considering exceptional, rather than average 
performances by the models.  For many 
forecast periods, two or more models shared 
the distinction of earning the highest or lowest 
rating (Table 4).  That is, there was a tie for 
first or last place in the ratings.  When ties are 
included in computing frequency, the numbers 
of highest ratings follow essentially the same 
pattern as the average ratings.  The WRF03 is 
clearly an outlier on the lower end of the 
highest ratings and on the higher end of the 
lowest ratings.  However, the more interesting 
results emerge when ties are not included, 
highlighting the events when one model was 
distinctly better or worse than all the others.  
With this criterion, the EtaKF stands out with 
nine highest ratings and zero lowest ratings.  
The NMM and WRF12 both have fairly large 
numbers of highest ratings, but they also 
earned the lowest ratings on a comparable 

 
Frequency of High and Low Ratings 

 Eta EtaKF NMM WRF12 WRF03 
Highest Rating (including ties) 11 18 14 16 7 
Lowest Rating (including ties) 5 2 9 9 27 

Highest Rating (NOT including ties) 2 9 5 7 4 
Lowest Rating (NOT including ties) 1 0 6 5 21 

 
Table 4.  Frequency of high and low ratings for the data shown in Table 1 



number of forecasts.  The operational Eta 
received very few highest or lowest ratings.  It 
tends to produce “conservative” precipitation 
forecasts with relatively smooth, low 
amplitude features, but it rarely fails to 
provide a signal for convective precipitation 
associated with meso and larger-scale 
disturbances.  Finally, it is noteworthy that the 
WRF03 earned the lowest ratings more than 
twice as often as all other models combined.  
Yet it also earned the highest rating for four 
different forecasts.  These numbers highlight 
the importance of considering many different 
meteorological scenarios before passing 
judgement on the comparative performance of 
different models in forecasting convection. 
 
3.2  One-hourly forecasts:  Comparison of 
WRF12 and WRF03 
 
 As can be deduced from the 3-hourly 
results discussed above, WRF03 forecasts 
were quite unimpressive for the most part.  
Comparison of 1-hourly precipitation fields 
from the WRF12 and WRF03 yielded more of 
the same - a significant disadvantage for the 
WRF03 in terms of timing, location, and 
evolution of convective activity.  However, 
the 3 km configuration often provided useful 
information about convective mode (e.g., 
isolated convective cells vs. a squall line), 
whereas such indications were generally 
lacking in all of the coarser resolution models 
(see also Done et al. 2004).  Furthermore, in 
spite of the generally poor performance of our 
“no-CP” (no convective parameterization) 
version of WRF, we are encouraged about the 
future of higher resolution WRF forecasts by 
the results obtained using a 4 km version of 
the model in support of BAMEX (Bow echo 
and MCV experiment, also carried out during 
the spring and early summer of 2003).  The 
BAMEX 4 km WRF often performed well in 
terms of timing, evolution, and mode of 
mesoscale convective systems (see Weisman 
et al. 2004 and a thorough on-line dataset at 

http://www.joss.ucar.edu/bamex/catalog/).  
The BAMEX configuration included a much 
larger domain, somewhat different physical 
parameterizations, and the Eta 212 grid (40 
km grid spacing) for initial conditions.  These 
differences apparently enhanced the WRF 
forecasts for BAMEX significantly (compared 
to our forecasts) and they paint a more 
optimistic picture of the future of convection–
resolving numerical forecasts.     
 
4. SUMMARY 
 
 Forecast teams subjectively compared 
predictions of convective initiation and 
evolution from five different deterministic 
forecast models during the 2003 SPC/NSSL 
Spring Program.  Results substantiated the 
validity and utility of the systematic subjective 
verification process and they provided 
valuable information about the comparative 
performance of the models. 
 Relative ratings of two benchmark models, 
the operational Eta and the EtaKF, were 
consistent with subjective verification results 
from a similar experiment in 2001 (Kain et al. 
2003b).  In particular, the EtaKF was rated 
considerably higher than the Eta on average 
and the difference was statistically significant.  
As in 2001, however, there were many 
individual forecast periods for which the Eta 
received higher ratings.  This result suggests 
that forecasters are wise to consider solutions 
from both models in preparing their forecasts. 
 In contrast, forecasts from the Eta and 
NMM displayed similar characteristics and 
their individual subjective verification ratings 
were strongly correlated.  This result should 
not be surprising, considering that the Eta and 
NMM use very similar physical 
parameterizations.  It bodes well for a smooth 
transition from the Eta to the NMM as the 
primary 1-3 day deterministic forecast model, 
yet it suggests that the higher resolution of the 
NMM will not necessarily translate into more 



detailed or “better” forecasts of convective 
systems. 
 Mesoscale forecasts with the WRF model, 
using the Kain-Fritsch convective 
parameterization (Kain 2004) and 12 km grid 
spacing, were quite good on some days, 
especially considering that this model was 
initialized from a smoothed version of Eta 
initial conditions on a grid with 80 km 
spacing.  On average, WRF12 forecasts 
earned ratings that were lower than EtaKF 
scores, but higher than both the Eta and NMM 
ratings (though not in a statistically significant 
sense).  The WRF12 often provided much 
better forecasts during the first half of the 
rating period (1800-2100 UTC), than during 
the 2100-0000 UTC period. The cause of this 
inconsistency is under investigation.   
 A high-resolution configuration of WRF 
(3 km grid spacing) received the highest rating 
about 10% of the time, but it was rated 
considerably worse than all other models on 
many days.  This version of the model was 
handicapped by very coarse initial conditions, 
lateral boundary effects exacerbated by a 
small domain (1200 km on a side), and 
possibly other factors.  Forecast teams 
frequently noted that explicitly predicted 
convection in the WRF03 was just beginning 
to “spin up” by the end of the forecast period.  
Spin up and lateral boundary problems appear 
to have been much less severe in realtime 
WRF forecasts from NCAR, generated during 
an overlapping time period in support of 
BAMEX (Chris Davis 2003, personal 
Communication; Weisman et al. 2004).  
Although the BAMEX forecasts used slightly 
coarser horizontal resolution (4 km grid 
spacing) they benefited from a considerably 
larger domain and higher resolution initial 
conditions.  Obviously, much more work is 
needed to optimize model configurations for 
realtime forecasts without parameterized 
convection. 
 Finally, it is worth emphasizing that the 
internal consistency of these subjective 

verification results validates the methods used 
to obtain them.  In particular, the fact that 
differences in mean ratings are completely 
consistent with differences in model physics 
provides strong evidence that the subjective 
verification methods used in the Spring 
Program are efficacious.  As emphasized by 
Murphy (1993), the “goodness” of a forecast 
is a multifaceted concept that can be nebulous 
and very difficult to express.  Standardized 
objective verification metrics may sample 
some aspects of goodness, but they are likely 
to fall short of the holistic assessment of 
human analysts and forecasters.  Systematic 
subjective verification provides unique 
information that is inherently lacking in 
traditional verification metrics.  
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