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1. INTRODUCTION

The simplest nontrivial covariance models for
use in 3D or 4D variational assimilation tend to
be based on the horizontally isotropic Gaussian
form. The reason for this is that this particular
shape, or approximations to it, can be efficiently
synthesized numerically by a variety of convenient
methods. Examples include using the compact
support approximations to Gaussians proposed by
Gaspari and Cohn (1999), the simulated diffusion
methods of Derber and Rosati (1989) and Weaver
and Courtier (2001), and the use of spatial digital
filters designed to mimic a Gaussian, as discussed
by Purser and McQuigg (1982); Hayden and Purser
(1995); Huang (2000); Dévényi and Benjamin
(2003). However, studies of the actual structure of
forecast errors (e.g., Baker et al. 1987, Thiébaux
et al. 1990) indicate that this simple choice is
deficient, not only in its restriction to an isotropic
form, but also because the Gaussian shape itself
gives insufficient weight to both the smallest and
the largest resolved scales in comparison to those
intermediate scales close to the Gaussian’s defining
scale parameter.

We address these deficiencies by presenting a
broader parametric family of distributions, of which
the Gaussians are special members, but which also
accommodates a very general tensorial prescription
of anisotropy, together with adaptive control over
the degree of spatial “kurtosis” of the shape of the
covariance distribution. The broader family of dis-
tributions generalizes to two or three dimensions
what Purser et al. (2003) refer to as the “Hyper-
Gaussian” family of distributions. These may be
thought of as a particular class of positive mixtures
of Gaussians of different scales. Our new family of
covariance models enjoys several algebraically con-
venient attributes, including the fact that the set
of shapes of the implied power-spectra are exactly
of the kind that are accommodated by the same
parameteric model applied in the Fourier domain.
Because each member of the proposed family can be
formed as an additive mixture of anisotropic Gaus-
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sians, the efficient numerical methods that facilitate
the practical application to variational assimilation
of the simpler Gaussian covariances can also be ex-
tended without difficulty to the applications involv-
ing discrete approximations to these more appro-
priate and more general hyperGaussian covariance
forms.

The conceptual basis for the generalization we
are proposing involves an essentially geometrical
viewpoint, which we shall elaborate in the next two
sections. In section 4 consideration is given to the
practical implementation of approximations of these
covariances to variational assimilation. The final
section lists some of the techniques by which the
parameters of hyperGaussians may be estimated
objectively using the information available from
observations or from forecast ensembles.

2. A GEOMETRICAL CHARACTERIZATION
OF GAUSSIAN SHAPES

The geometrical viewpoint we adopt regarding
the shapes of Gaussian covariances is that each
“aspect tensor” (Purser et al., 2003) of normalized
and centered spatial second moments of the given
distribution is identified with a particular “point”
in “aspect space”. The space has dimensionality
equal to the number of independent components of
the symmetric aspect tensor (three components for
two physical dimensions, six components for three
physical dimensions). Furthermore, aspect space is
assumed to be endowed with a continuous Riemann
metric in terms of which the concept of a “distance”
between any given pair of Gaussian shapes becomes
meaningful and definite.

In two physical dimensions, an aspect tensor A
defining the shape of a Gaussian profile,

G(z) = G(0) exp(~z" A" z/2), 1)

and its three independent components may be
formed into a 3-vector:

Al = (A:cw - Ayy)/27 (2(1)
A2 = Awy; (Zb)
AB = (A:cw + Ayy)/Qa (Qc)



and we deduce that, since the principal components
of A,
Ae = Az & (A7 + 42, (3)

most both be nonnegative for a valid Gaussian, the
feasible region of aspect space comprises the right
circular cone:

(A7 + A3) < A3, (4a)

A3z > 0. (4b)
The hyperboloids,

Aj — (A} + 43) =D, (5)

define the surfaces of constant determinant, D =
|4 = ApA_ and therefore group together the
Gaussians of equal effective areal coverage.

A natural measure of separation for aspect
tensor A and an infinitesimal perturbation to it,
A+dA, is obtained by taking v/2 times the smallest
Frobenius norm (e.g., Golub and Van Loan 1989)
among infinitesial spatial deformation operators dI’
that transform A into A 4+ dA according to the
conjugacy:

A+dA= (I+dD)A(I+dD)T. (6)

The square of this natural distance measure is then:
1
|4, A+dA|? = 5trace[(A—ldA)ﬂ. (7)

It can be shown that for any pair of valid aspect
tensors A; and A, (7) implies a distance of
separation satifying:

3
1
14, 4 [ = 5 > (log As)?, (8

i=1

where A; are the eigenvalues of (A7'A4;). Equiva-
lently,

1
|41, A = §trace{[108;(Af1Az)]2}, 9)

where the logarithm function has been extended in
the natural way to tensor arguments.

It can be shown that, under this metric, the
hyperboloidal surfaces of (5) each form a geodesic
subspace of constant negative-unit intrinsic (“Gaus-
sian”) curvature (neighboring, apparently parallel
geodesics in such a subspace diverge exponentially
from each other, regardless of their initial orienta-
tion). A sample of the geodesics in another sec-
tion, the plane containing the cone’s axis (which
corresponds to the set of isotropic aspect tensors)
is shown in Fig. 1. Here, the Gaussian curvature

Figure 1. Geodesics through a central point (corresponding
to an isotropic Gaussian) in the (A;, A3) plane of the cone of
feasible aspect tensors for two-dimensional Gaussian profiles.
The marks along each geodesic curve are uniformly spaced
in the natural metric defined in section 2.

vanishes, so, despite the distorted appearance of the
geodesics, the intrinsic geometry actually remains
Euclidean. However, at no orientation in aspect
space is the intrinsic curvature positive — a prop-
erty shared by the aspect spaces of N =d(d+1)/2
dimensions associated with physical spaces of d di-
mensions for all d > 1. The natural metric de-
fined by (8) or (9) interprets each associated as-
pect space infinite and unbounded with an intrinsic
non-positive curvature (when d > 1) that is ho-
mogeneous (symmetrical to translations), but not
fully isotropic (symmetrical to rotations), through-
out the aspect space.

3. CHARACTERIZATION OF
HYPERGAUSSIAN SHAPES

While a point in aspect space identifies only
a Gaussian’s spatial shape, a delta-function impul-
sive weight distribution at a point can prescribe
both this shape and the amplitude (the variance).
We propose to model each fat-tailed distribution as
the continuous superposition of Gaussian compo-
nents. This immediately suggests that fat-tailed,
symmetric covariance shapes may be identified by
more general weight distributions in aspect space
than simply a delta function. With a continuous
weight function, its value at each point A in aspect
space quantifies the additive contribution of the cor-
responding Gaussian component. Clearly, there are
very many way of carrying out such a superposition.
However, for the purposes of objective data anal-
ysis, we wish to define a family of parameterized
covariance shapes, the parameters of which provide
direct control over the degree of generalized “kur-
tosis” in different orientations, but are not too nu-
merous. We also ask that the Gaussians themselves
belong to our family and that at least some of their



algebraically convenient attributes are inherited by
the expanded family.

For example, we shall require closure of our
family under linear transformations of physical
space — that is, uniform stretching, rotation and
shearing operations. These are operations that, ge-
ometrically, correspond to the isometric translation
and rotation symmetries of aspect space under the
Riemann metric defined in section 2. Therefore, in
examining the anatomy of a representative member
of the proposed family, it is sufficient primarily to
consider the “standard” forms of weight distribu-
tions that are centered on the location correspond-
ing to the identity aspect tensor — the same point
at which the geodesics intersect in Fig. 1. The
isotropic Gaussian covariance of unit width corre-
sponding to this point is shown in Fig. 2.

We shall also ask that the family be closed un-
der Fourier transformation, in the sense that the
power spectrum (Fourier transform) of each stan-
dardized synthetic covariance possesses a formally
identical composition, except in the reciprocal space
of Fourier wave-vectors. Purser et al. (2003) show
how a family of hyperGaussian profiles, synthesized
as a Gaussian mixture (in log-scale space) of Gaus-
sians possesses the algebraic properties listed above.
One such member of this family is depicted in Fig.
3. Here we show how this class of hyperGaussian
distributions can be further generalized to a more
versatile family by replacing a Gaussian mixture
over a single parameter (log-scale) by a “diffusive”
mixture over the full aspect space.

In order to maximize the formal symmetry
between a generic hyperGaussian and the Fourier
transform of one, we adopt the convention that a
mixing weight comprising a unit delta-function at
aspect, A, corresponds to the Gaussian covariance
with the amplitude, G(0), of (1) given by:

G(0) = |A]~Y/4. (10)

In d dimensions, we may obtain the Fourier
transform in wavevector k according to:

G(k) = (2m)~%? /G(::) exp(—ik"z) dzy . .. dxg.
(11)
Whence,
G(k) = |A]'/* exp(—K' AK/2), (12)

emerges as a new Gaussian obeying the same am-
plitude convention (10), except with A~" replacing
the original A. Note that A and A" lie on the same

Figure 2. Contours of a Gaussian distribution with identity
aspect tensor

Figure 3. An isotropic fat-tail hyperGaussian distribution
obtained by a weighting function W resulting from diffusion
of an initial impulse at A = I along the axis of the aspect
cone

aspect space geodesic passing through the identity
point, I, which they straddle symmetrically. Thus,
when a continuous mixing weight distribution W for



the Gaussian contributions to a covariance model,

H(z) = /I/V(A)|A|_1/4 exp(—z! A~ z/2)da,

(13a)
da = dAl . dAN, (13b)

obeys the symmetry,
W(A) =w(Ah, (14)

then H and its Fourier transform, H, are identical.
One family of such symmetrical weight functions,
including the Gaussian as a special limiting case, is
obtained by subjecting an initial delta function at
A = I'to a diffusive process with specified diffusivity
and duration. This is analogous to the way Derber
and Rosati (1989) and Weaver and Courtier (2001)
employ diffusion to generate Gaussian covariances.
However, in the present case it is a weight function
W (A) that is the end result of the diffusion process,
and the space in which it operates is the

Like Weaver and Courtier, we need not restrict
the effective diffusivity to being isotropic but can
allow it to assume any prescribed symmetric non-
negative second-rank tensorial form. However, since
the N aspect space position vector components are
themselves components of a tensor of second rank
in physical space, we may legitimately identify a
second-rank aspect space diffusivity tensor K with
a tensor K of Fourth rank in physical space. The
symmetries of K all follow from the rules:

Kiaj;k7m = K'vi;kvm = Kk,m;ivj’ (15)

that reduce the number of independent components
to six in two spatial dimensions, and to 21 in three
spatial dimensions.

There is a geometrical subtlety related to the
non-Euclidean nature of aspect space; except in
special isotropic cases it makes no sense to speak of
a tensor being “constant” over the space. Therefore,
in formally constructing the standard (identity-
centered) weight functions for members of the
hyperGaussian family, we must be careful to specify
that the aspect space diffusivity K(A) at each A to
be given by “parallel transport” of K(I) along the
geodesic joining I to A. The weight function W (A)
is then obtained by “diffusing”, for an imagined
duration of one half unit of “time”, an initial delta
function at A = I of specified amplitude C"

W(A) =W'(A,1/2), (16a)
where,

62W’(A, ) =V -KVW'(A,7), (16D)
-

W'(A,0) = C5(A— I). (16¢)

This will give a distribution for W, obeying (14),
and of approximately Gaussian form with a disper-
sion tensor (in the usual second-moment sense) of
approximately K. (Again, it is the non-Euclidean
nature of aspect space that makes these “approxi-
mately” qualifications necessary; these approxima-
tions are excellent when the dispersion implied by K
is small in comparison to the space’s unit intrinsic
curvature.)

For a generic hyperGaussian centered on some
general aspect tensor, it is sufficient to invoke
the translation isometries of the aspect space
and apply a parallel transport operation to the
appropriate member of the family of standardized
hyperGaussian weight funstions that are centered
about the identity aspect. In this most general
form, the hyperGaussian in a physical space of
d dimensions is defined by a single amplitude
parameter, C, the N = d(d + 1)/2 independent
parameters locating the central aspect tensor, and
the N(N + 1)/2 independent dispersion parameter
defining K.

A convenient and simpler subset of this family

occurs when we restrict the dispersion model K to a
tensor in aspect space whose matrix representation
has rank one. That is,

A ~ AT
K=vv , (17)

for some aspect space vector, V, (or, equivalently,
some corresponding second-rank symmetric tensor

Figure 4. A hyperGaussian whose weighting function W is
the result of diffusing an initial impulse at A = I along an
oblique geodesic contained in the constant |A| subspace



V in physical space). In this case, the diffusion of
W' in (16) is confined along one particular geodesic
through the center. Even with this restriction,
a surprising variety of covariance forms may be
produced. abstract parameter space of aspect
components, not physical space.

Fig. 4 shows how a slightly square-looking co-
variance emerges from a weighting function formed
by diffusion of an impulse along a geodesic con-
tained in the subspace (5) of constant |A|. (Note
that the orientation of the covariance shape changes
at half the rate of any change in the orientation of
this geodesic.) In this case, the contributing Gaus-
sians all share the same effective geographical area.
In Fig. b5, this is no longer the case. The diffu-
sion that results in weighting function W is here
along a geodesic oriented obliquely to both the as-
pect cone’s axis and to the geodesic subspaces de-
fined by (5). As aresult, we find that the elongation
of covariance at small scale (see contours close to
the center) is orthogonal to that of the larger scales
(see outer contours).

Figure 5. A hyperGaussian whose weight function W is the
result of diffusing an initial impulse at A = I along a geodesic
angled obliquely to the constant |A| subspaces

4. PRACTICAL APPROXIMATIONS TO
IDEAL HYPERGAUSSIANS

In the introduction we discussed several of the
practical methods by which a Gaussian covariance
(or strictly, the convolution operation implied by
a kernel of Gaussian form) may be incorporated
into a variational assimilation. The property of
a Gaussian convolution kernel that makes it a
uniquely attractive choice from the point of view of

computational efficiency is that its various multi-
dimensional forms can all be synthesized from a
short sequence of simple one-dimensional Gaussian
smoothers. While we formally lose this property in
the extension to the hyperGaussian family, we can
still exploit it indirectly provided we approximate
the continuous superposition defining the true hy-
perGaussian by a discrete superposition of a modest
tally of carefully selected contributing Gaussians.
For the rank-one subset of hyperGaussians we have
considered, the weighting distribution W is itself
a Gaussian (in s, the metrical distance along the
geodesic from the initial center) and a very neat so-
lution to the discretization is then suggested by tak-
ing the nodes and discrete quadrature weights of the
Gauss-Hermite quadrature for which the associated
orthogonal polynomials are the Hermite polynomi-
als orthogonal with respect to weight W. Press et
al. (1992) provide a convenient algorithm for these
quantities.

For the full-rank hyperGaussians, the weighting
function W remains approximately Gaussian pro-
viding its degree of dispersion does not greatly ex-
ceed unity, the aspect space’s characteristic scale
of intrinsic curvature. When this is the case, W
can be approximately factored (in the convolu-
tion sense) into one-dimensional Gaussians, each of
which may be discretely sampled at their Gauss-
Hermite quadrature nodes. The cartesian product
of these quadrature points form a reasonably effi-
cient sampling array for the reconstruction of our
full rank hyperGaussians. Obviously, the cost is
substantially greater than in the equivalent rank-
one discretization, especially when a relatively high-
order of quadrature is selected. However, in most
cases, the main benefits of using hyperGaussian co-
variances in preference to Gaussians are attained
with quadrature discretizations of as few as two
points in each dimension.

5. PARAMETER ESTIMATION

We have provided a detailed description of the
construction of a useful family of fat-tailed distribu-
tions that generalize the commonly-used Gaussian
family in multi-dimensions, we have noted some of
their algebraic properties and illustrated a few ex-
amples. In order to apply these methods to data
assimilation, we need to be able to make some in-
telligent estimates of the various parameters that
now define not just amplitude (variance) and scale,
but those attributes of shape that we have bun-
dled together as “generalized kurtosis”. While di-
rect curve- or surface-fitting procedures (e.g., see
Thiebaux et al. 1990; Baker et al. 1987) provide
a statistically robust approach to estimating co-
variance parameters when validating data are plen-
tiful, there are other objective methods that also



have attractive features. Maximum likelihood (Dee
and da Silva 1999) and its Bayesian generalization
(Purser and Parrish 2003) offer options that are
statistically efficient, though not necessarily robust;
Wahba’s method of “Generalized Cross-Validation”
(e.g., Craven and Wahba 1979; Wahba 1990) is a
possibly more robust method, but has not been ex-
tensively applied to simultaneous estimation of such
large sets of covariance parameters as would be re-
quired for hyperGaussians.

Finally, we should not omit to include the pos-
sibility that forecast ensembles might provide some
of the required information. It is not too difficult to
extract estimates of local spatial moments of back-
ground error implied by the sample covariances of
appropriate gradients of ensemble members, pro-
vided the latter are collectively consistent with the
error statistics desired. While there is not a clean
one-to-one correspondence between the fourth spa-
tial moments of the hyperGaussian covariance and
its K parameters, there is at least a partial corre-
sponence which could conceivably be exploited by
gleaning the relevant sample-moment information
from ensembles.
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