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1. Introduction 
 

In the United States, the ground-based GPS PWV 
(precipitable water vapor) measurements are available 
hourly in near real-time (about 50 min after the 
observation time) from three networks: Suominet, 
FLSnet, and CORSnet. There are a total of 199 ground-
based GPS sites from these three networks, but usually 
about 100 sites provide reports at a given time (see Fig. 
1). To exploit the information from this new type of 
observations, the MM5 3DVAR system (Barker et al. 
2004), which is a newly developed analysis tool, is used 
to assimilate the GPS PWV measurement along with 
other conventional data. A convective case (12 June 
2002) during the IHOP (International H2O Project) IOP 
was chosen to assess the impact of the ground-based 
GPS PWV measurements on short-range forecasts.  

However, to extract useful information from the 
GPS PWV measurements to improve the mesoscale 
convection forecast is still a challenging task because 
the Eta analysis, which is used as the background fields 
in 3DVAR, has already assimilated a variety of the 
conventional and non-conventional observations. 
Moreover, the 3DVAR system must be carefully tuned 
with the Background Error Statistics (BES), and the 
lateral boundary condition must be carefully treated.  

To exploit the information from the high temporal 
resolution GPS PWV data, a short time window (3-h or 
1-h) 3DVAR cycling run should also be implemented. 
However, the use of high-frequency observations can 
excite spurious gravity waves, which must be overcome 
with certain techniques, such as the IAU (Incremental 
Analysis Update – Bloom et al, 1996). 

 In this study, a series of numerical experiments 
were conducted to assess the impact of GPS PWV 
data, 3DVAR assimilation system, and the assimilation 
strategy.  

 
2. Ground-based GPS PWV data 
 

The hourly GPS PWV data are provided by UCAR 
COSMIC Project, starting from 21 April 2002 in near 
real-time mode. In addition to the GPS PWV and its 
observation error, the wet-delay, dry-delay, K-factor, as 
well as the surface pressure, temperature and relative 
humidity at the site, are also provided by UCAR 
COSMIC. In this study, we assimilated GPS PWV with 
its errors estimated by the data provider. 

 

 
 
Fig. 1. A total of 102 GPS PWV Observations  are 

available at 0000 UTC 13 June 2002 over the 
United States.  

 
 

 
Fig. 2. The scatter diagram between GPS PWV 

observations and MM5 simulation. The coordinates 
have been scaled: the origin (0.0) is equivalent to 
PWV= 2.1 mm, and the value of 1.0 is equivalent to 
PWV = 57.8 mm. The linear regression is the thick 
solid line.  The total number of samples is 1013, 
and the correlation coefficient = 0.964. 

 
First, we perform a validation study for this new 

type of data with the MM5 model simulation, and to see 
if there is new information contained in this type of data. 



Figure 2 is a scatter diagram between the observed 
GPS PWV and the model simulated PWV during a 24-h 
period from 12 UTC 12 to 12 UTC 13 June 2002 within 
our experimental model domain (Fig. 3).  

From this figure, the observed GPS PWV has a 
high correlation with the MM5 simulation, but the model  
simulation has a small positive bias for the large values 
of PWV. The mean of GPS PWV is 29.83 mm, while 
that for MM5 is 31.04 mm. The standard deviations for 
GPS PWV and MM5 are 13.48 mm and 14.60 mm, 
respectively. For this case, the model may not gain too 
much from the ground-based GPS PWV data since the 
correlation coefficient is quite high already (0.964). 
 
3. Convective case on 12-13 June 2002 
 

 
 
Fig. 3. 3-h accumulated precipitation derived from  the  

National Stage-IV Precipitation Analysis (from 
NCEP). a) 2100 UTC 12 to 0000 UTC 13, b) 0000 
to 0300 UTC 13, c) 0300 to 0600 UTC, and d) 0600 
to 0900 UTC 13 June 2002. The counter level is 1, 
5, and 10 mm. 

 
At 2200 UTC 12 June 2002, a convective line 

extended from western Oklahoma to the Texas 
panhandle. Two hours later, the squall line was well 
developed from southeast Kansas to Texas panhandle 
(Fig. 3a). The maximum rainfall amount was 114.4 mm, 
located at Oklahoma-Kansas border. Then the squall 
line moved southeastward gradually and finally 
dissipated at around 1000 UTC 13 June. 
 
4. Experiment design 
 

Two sets of the experiments were conducted: a 
Cold-start run and Cycling-run. In order to find an 
optimal Background Error Statistics (BES) in the 
3DVAR system for this case study, we first performed 
the Cold-start experiments. This was then followed by a 

set of Cycling-run experiments to exploit the information 
from the high temporal resolution GPS PWV data.  
 
 
 
 
 
 
 
 
 
Fig. 4. Schematic diagram for experiment design 
 

For the Cold-start set, the control Experiment 
(CONTRL) is a straightforward 24-h forecast with the 
Eta analysis as the initial condition at 1200 UTC 12. 
 
Cold-start 3DVAR experiments: 
 
3DOBES: Both conventional and GPS PWV    were 

assimilated at 1200 UTC via 3DVAR with 
the default BES, followed by a 24-h forecast 

3DOBSL: same as 3DOBES but the tuned scale-length. 
3DNBSL: 3DVAR with the New computed BES and 

tuned scale-length from the default BES.  
3DNBPW: same as 3DNBSL but only GPS PWV 

assimilated. 
 

In all the 3DVAR experiments, the Eta analysis at 
1200 UTC 12 was used as the background fields and 
the 6 hourly Eta forecasts provided the lateral boundary 
conditions for model forecasts. 

 
3DVAR Cycling-run experiments: 
 
CTRL00: 36-h forecast initialized form Eta analysis at  

0000 UTC 12.  
CYCLE0: 3-h 3DVAR cycling from 0000 UTC 12. The 

data assimilated include the upper-air data 
at 0000 and 1200 UTC 12, and the surface 
and GPS PWV data at 3-h interval from 
0000 to 1200 UTC 12. The BES file is  the 
same as in 3DNBSL.   

CYCNPW: same as CYCLE0 but No GPS PWV data 
assimilated. 

 
In all 3DVAR Cycling-run experiments, the Eta 

analysis at 0000 UTC 12 is used as the first guess. The 
3-h boundary conditions between 0000 to 1200 UTC 12 
are obtained from 3 hourly Eta analyses and the 
boundary conditions between 1200 UTC 12 to 0000 
UTC 13 June are from the 6 hourly Eta forecasts. 

 
The model physics are exactly the same in all 

experiments, which include MRF-PBL, Dudhia radiation 
scheme, multiple soil layers, Kain-Fritsch-2 cumulus 
parameterization scheme, and Goddard mixed phase 
microphysics scheme with graupel. The model domain 
with a mesh size of 200x200x27 and 10-km grid 
distance is shown in Fig. 3. The integration time step is 
30 seconds. 
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5. Background error statistics 

 
There are three important input datasets in a 

3DVAR system: the first guess field, observations 
available, and the background error statistics. In the 
Cold-start experiments, the first guess, Eta analysis 
with 40-km resolution, has already blended the 
information from all conventional upper air and surface 
observations as well as other remote sensing data 
available (SATOB, satellite radiances, etc.)  through the 
NCEP EDAS (Eta data assimilation system). In our 
experiments, in addition to the hourly GPS PWV data, 
we only have the 12-h interval upper air and the hourly 
surface observations available from the NCAR archive. 
As seen below, it is difficult to improve upon the 
forecast initialized from the Eta analysis (CONTRL). To 
improve the performance of MM5 initialized from the 
MM5 3DVAR system, one thing we can do is to fine-
tune the BES file. 

As the default, we have an interpolated BES from a 
210-km resolution global background error statistics file. 
When the 3DVAR is run with this default BES, the 
results (3DOBES) are worse than those from CONTRL 
(Fig.4 and Table 1). 

In MM5 3DVAR system, the BES is composed of (i) 
the eigenvector and eigenvalue derived from the 
vertical covariance matrix of background errors; (ii) the 
regression coefficients used in transforming the 
increments of the streamfunction and potential velocity 
to the increments of the balanced pressure; and (iii) the 
scale-lengths used in the recursive filter modeling the 
horizontal correlation function. 
 
5.1 Eigenvector and eigenvalue 
  

The eigenvector and eigenvalue included in the 
default BES may not represent the error variances and 
the correlation structure of our specific case, a 10-km 
resolution model and a convective event. Therefore, we 
use five 24-h forecasts which are started at 1200 UTC 
10, 0000 and 1200 UTC 11, 0000 and 1200 UTC 12 
June, just prior to the initial time of our experiments, to 
derive the new eigenvector and eigenvalue, using the 
NMC method (Parrish and Derber, 1992). There are two 
advantages with the new eigenvector and eigenvalue: 
(1) the error variances and the correlation structure will 
better represent the case studied here because the 
data are from the same model integration and close to 
the event; and (2) since only five 24-h forecasts 
(equivalent to an 120-h forecast) are needed in the 
calculation, this is computationally very cheap. This 
could even be done online when the 3DVAR is 
implemented operationally.  

 
5.2 Regression coefficients for unbalanced pressure 
 

In the current NMC-method code, the regression 
coefficients are computed in a latitude-dependent  (or a 
Y-direction-dependent) way to account for the 
inhomogeneity of the relationship between the wind and 
balanced pressure at different latitudes. However, since 

only five forecasts are used in the computation, the 
results may not be statistically stable, i.e. the regression 
coefficients are much different between the latitudes 
and produced the latitude-strip-shape pressure 
increments. To avoid this problem, the domain-
averaged regression coefficients are used in our 
experiments because the model domain is rather small. 

 
5.3 Scale-length used in recursive filter 

.    
The computation of the scale-lengths needs a large 

number of samples and is very expensive. Definitely, 
five forecasts are not sufficient to produce stable 
results. As Wu et al. (2002) found that the horizontal 
scales decrease when the resolution of forecast model 
is increased. Here we use the scale-lengths from the 
default (210-km resolution) BES in our experiments but 
with the tuning factors. The tuning factors are obtained 
based on the “single OBS” tests. For the 10-km 
resolution model, we found the tuning factors of 0.11, 
0.11, 0.11, and 0.45 for the control variables, 
streamfunction, potential velocity, unbalanced pressure, 
and the specific humidity, respectively to work 
reasonably well. This means that the scale-lengths for 
streamfunction, potential velocity, and unbalanced 
pressure are 1/3 of those in the default BES, and for the 
specific humidity is 2/3. The value of 0.11 equals (1/3)2, 
and 0.45 equals (2/3)2.   

 
Based on the above consideration, a new BES file 

was constructed with (i) re-computed eigenvector and 
eigenvalues, (ii) domain-averaged re-computed 
regression coefficients, and (iii) the scale-lengths from 
the 210-km global BES with tuning factors of 0.11, 0.11, 
0.11, and 0.45. Exp. 3DNBSL was performed with this 
new BES. To distinguish the effects of the tuning scale-
length from the re-computed eigenvector, eigenvalues, 
and regression coefficients, another experiment 
(3DOBSL) was also carried out with only the scale-
length tuning factors applied to the default BES. 

 
6. Results 
 

The main concern in this study is the convection 
occurred over Oklahoma-Kansas region between 2200 
UTC 12 to 1000 UTC 13 June. Therefore, the equitable 
threat scores of precipitation forecast verified against 
the 3-h accumulated precipitation derived from the 
NCEP/OH Stage IV precipitation analysis are used to 
assess the impacts of the 3DVAR system with the 
different BES specification, the GPS PWV assimilation, 
etc. on the convection forecast. The equitable threat 
scores are computed over the box shown in Fig.3. 

 
 

6.1 Cold-start experiments 
 

Figure 4 shows the equitable threat scores for 
different Cold-start experiments with the threshold of 5 
mm. Using the newly reconstructed BES, the scores 
from 3DNBSL are significantly higher than the other 
experiments in the 3-h periods ending at 0300 and 0900 



UTC, and similar in other 2 periods. For other 
thresholds, 1 mm and 10 mm, the results are similar. 
Table 1 summarizes the equitable threat scores 
averaged over the 4 periods for thresholds: 1, 5, and 10 
mm. It is clear that 3DNBSL gives consistent higher 
scores, especially for heavy rain amounts with the 
thresholds of 5 and 10 mm.  
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Fig. 4. The equitable threat scores of the 3-h 

accumulated precipitation forecast verified against 
the Stage IV precipitation analysis, for  threshold = 
5 mm and  Cold-start 3DVAR experiments 

 
Table 1. Equitable threat scores averaged over 4 

periods for different thresholds for Cold-start 
3DVAR experiments 

 
Exp. 1 mm 5 mm 10 mm 

CONTRL 0.2377 0.1573 0.1067 
3DOBES 0.2358 0.1538 0.0880 
3DOBSL 0.2651 0.1626 0.0717 
3DNBSL 0.2749 0.2050 0.1399 
3DNBPW 0.2452 0.1691 0.1037 
 
With the default BES (3DOBES), the scores are 

lower than those of CONTRL, initialized with Eta 
analysis. The default BES with the tuned scale-length 
factors (3DOBSL) gives the improved forecast skill for 1 
and 5 mm but not for 10 mm thresholds.  The GPS 
PWV only data assimilation with the new BES also 
produces the improved forecast skill for 1 and 5 mm, 
and has comparable skill to CONTRL for 10 mm. The 
assimilation of both conventional and GPS PWV data 
yields the best results. This suggests that the MM5 
3DVAR system with the new BES can extract additional 
useful information from the observations, and improve 
upon the Eta analysis which has already made use of 
those conventional observations. 

 
6.2 3DVAR Cycling-run experiments 
 

The 3DVAR Cycling-run experiments started from 
0000 UTC 12 June. To assess the impact of the 3DVAR 
and GPS PWV assimilation, we conducted a forward 
model integration starting from 0000 UTC 12 June as 
the benchmark. We did not directly compare the 
cycling-run results with those of the above Cold-start 
experiments because the first guess used in the Cold-

start runs was from the Eta data assimilation system, 
which used different forecast model and observation 
dataset (more observations than those from NCAR 
archive).

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

1300Z 1303Z 1306Z 1309Z

CTRL00
CYCLE0
CYCNPW

 
Fig. 5. The equitable threat scores of the 3-h 

accumulated precipitation forecast verified against 
the Stage IV precipitation analysis, for  threshold = 
5 mm and 3DVAR Cycling-run experiments. 

 
Table 2. Equitable threat scores averaged over four 3-h 

periods for different thresholds for 3DVAR Cycling-
run experiments 

 
Exp. 1mm 5 mm 10 mm 

CTRL00 0.1411 0.0720 0.0352 
CYCLE0 0.1747 0.0822 0.0489 

CYCNPW 0.1629 0.0773 0.0354 
 

Figure 5 shows that the 3DVAR Cycling-runs gives 
higher scores in the periods ending at 0300 and 0900 
UTC 13 for 5 mm threshold, but slightly lower scores in 
the other two periods as compared with the control 
forward integration (CTRL00). Without GPS PWV data 
assimilated, the scores, in general, are lower than with 
the GPS PWV assimilated. This means that the GPS 
PWV data have the added values to this convection 
forecast. Table 2 shows the 4 periods averaged scores 
for CTRL00, CYCLE0, and CYCNPW for thresholds of 
1, 5, and 10 mm. The CYCLE0 gives the best results, 
followed by CYCNPW, and then CTRL00. 

Comparison of Table 2 with Table 1 shows that the 
3DVAR Cycling-run has much lowers forecast skill than 
the Cold-start run. For the thresholds of 5 and 10 mm, 
all the Cycling experiments, CTRL00, CYCLE, and 
CYCNPW, have almost no skills in this convection 
forecast.   

 
7. Discussion and conclusions 

 
7.1, Discussion 

 
One major problem in this study is that the 3DVAR 

Cycling-run experiments possessed very little skills in 
convection forecast. Actually we tried many different 
strategies to improve the 3DVAR Cycling run, such as 
using IAU (Incremental Analysis Update) technique, 
more frequent (1-h) cycling, etc., but with limited 
success. We realized that a 10-km resolution model 



might have limited skill in predicting such kind of fine 
scale convection (Fig. 3). However, at 1200 UTC 12 
June, the 3DVAR Cold-start run and 3DVAR Cycling-
run used the same observations, the same BES, and 
the same lateral and low boundary conditions during the 
ensuing 24-h forecast period. The only difference is the 
first guess field: Cold-start run used the Eta analysis, 
and Cycling-run used MM5 forecast through the 
previous four 3-h cycles. This suggests that the quality 
of the first guess field in the Cycling-run is worse than 
the Eta analysis. The lack of observations in the 12hr 
cycling period of 3DVAR (only surface and sondes) is 
likely to be a major source of error. 

An assimilation system has three components: (i) 
observation database, (ii) analysis approach, and (iii) 
forecast model. Through the Cold-start experiments, the 
analysis approach, MM5 3DVAR, used in this study is 
shown to be capable of extracting additional useful 
information to improve short-range forecast. In addition 
to the lack of observations, the problems in Cycling-run 
experiments might come from a significant model error 
of a non-perfect forecast model (MM5), in particular in 
its ability to handle convection.  

To exploit the information from the high temporal 
resolution GPS measurements, it is necessary to 
perform cycling 3DVAR or, better yet, the 4DVAR. In 
the future, we will attempt (i) to obtain more 
observations, such as wind profiler data, satellite data, 
etc., and (ii) to make use of the next-generation 
mesoscale model, WRF, which may have an improved 
ability in handling convection. We also plan to test the 
3DVAR system over an extended (several week) period 
to provide statistically significant results. Such work is 
necessary to obtain sufficient information for a thorough 
tuning of the background error statistics. 

 
7.2, Conclusions 

 
Some preliminary conclusions can be drawn from 

this initial 3DVAR study: 
 

(1) The newly constructed background error statistics 
is a key component of 3DVAR system, which 
allows the 3DVAR system to more effectively 
extract the useful information from the conventional 
and GPS PWV data, and to improve convection 
forecast.  

 
(2) The proposed approach to construct the BES file is 

relatively inexpensive in terms of the computing 
cost. It is worthwhile to test it with other cases. In 
the future, such approach may be implemented 
online for operation. Use of observation minus 
forecast differences (Hollingsworth and Lonnberg, 
1986) and/or variational techniques (Dezrosiers 
and Ivanov, 2001) would provide a more physically-
based tuning of the BES, than the empirical case-
dependent tuning performed here. 

 
(3) GPS PWV data can be used to improve convection 

forecast.  However, the best results are obtained 
when the GPS PWV data are assimilated together 

with other the conventional and remote sensing 
data. 
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