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Abstract

This paper proposes a simple method for scale- and
flow-dependent calibration of ensemble spread to ac-
count for excessive damping in a numerical weather pre-
diction model. It is hypothesized that relationships be-
tween spatial variance and error growth can be applied
to calibrate individual forecast periods. The relationships
are transformed to spectral space and a simple example
is used for concept demonstration. Applicability to indi-
vidual forecasts is then tested on six independent cases
by introducing numerical damping to the Weather Re-
search and Forecasting (WRF) model. The results show
that error growth estimated by the ensemble of imper-
fect damped forecasts can be calibrated to agree with the
undamped model. The empirical correction factor is a
function of the scale-dependent spatial variances in two
model forecasts, and the flow of the day. Finally, the lim-
itations of the calibration are demonstrated by comparing
against a third model with very different error properties,
and it is argued that the calibration provides a measure of
the effect of those differences on ensemble spread. The
calibration approach has potential application to ensem-
ble forecasting systems, estimates of predictability lim-
its, model-error diagnosis, and modern data assimilation
systems.

1. Introduction

Numerical weather prediction model imperfections
combine with initial-condition error to produce forecast
error. Traditional ensemble forecasts attempt to predict
the error by estimating the effect of initial-condition un-
certainty on the forecast, but model imperfections still
inhibit those estimates. One common source of model
error results from numerical diffusion (damping), which
produces stability while limiting the development of
small-scale variance. An ensemble of forecasts with an
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overly-damped model will be under-dispersive and con-
sistently under-predict error growth. The severity de-
pends on the flow of the day and on the forecast lead
time.

Error statistics forecast by an under-dispersive ensem-
ble can be improved by posterior calibration through a re-
gression against the climatological error (e.g. Hamill and
Colucci 1998). Because the effects of damping varies ac-
cording to the flow of the day, a calibration that relies on
only the current forecast might provide further improve-
ment and have applications to both operations and re-
search. For example, ensemble-based data assimilation
algorithms require accurate, flow-dependent, variance-
covariance information from an ensemble forecast to
be optimal, and can easily include model error covari-
ances (e.g. Dee 1994). Research including observation-
system simulation experiments for designing observing
and data-assimilation systems, experiments to estimate
the limits of predictability of phenomena or scales, and
experiments to characterize initial condition and model
error, could also benefit from improved error-growth es-
timates.

This study proposes and demonstrates a method for
calibrating (correcting) flow-dependent ensemble spread
by accounting for one type of model error: deficient
spatial variance. Spatial variance and ensemble spread
are related in the stationary climate limit (Leith 1974),
explaining why an overly-damped model will produce
climatologically under-dispersive ensembles. But daily
variability in forecast spatial variance leads to daily vari-
ability in ensemble dispersion. Variances can be trans-
formed to spectral space to obtain information about
forecast amplitude, and a damped model will show
smaller amplitudes at high wavenumbers. The overall ef-
fect of damping on ensemble spread then depends on the
importance of high wavenumbers to the error growth in a
forecast. We hypothesize that individual time-dependent
forecast spectra can be used to correct the spread of an
under-dispersive ensemble and achieve a spread appro-
priate for that particular forecast. Because damping ef-
fects will be unknown, and vary by case and forecast lead
time, we must test the approach on individual forecast
periods selected from different flow regimes. A refer-



ence model, which serves as truth, is used to make ref-
erence ensemble forecasts. Under-dispersive ensembles
are generated by introducing model error in the form of
a damping term. For any one forecast and lead time, a
spectral calibration factor is computed from the refer-
ence and imperfect control forecast spectra. It contains
the accumulated effects of damping on the spatial vari-
ance of the forecast, and can be used to correct the spread
of the under-dispersive ensemble to agree with the refer-
ence ensemble.

The calibration is tested by applying a damping term
to the model equations, but is aimed at any model er-
ror that results in a damped spectrum. It could be use-
ful when a necessary component of model implemen-
tation, such as numerical diffusion or boundary condi-
tions, is required because of expense or numerical sta-
bility. In the practical case that forecast spatial vari-
ance is limited because of computational constraints, a
relatively inexpensive ensemble can be calibrated to ob-
tain the error-growth statistics that would result from
an expensive ensemble. For example, mesoscale mod-
els are often employed on limited domains to reduce
costs, but recent studies reporting under-dispersive en-
sembles (Hamill and Colucci 1998; Hou et al. 2001;
Grimit and Mass 2002; Hacker et al. 2002) suggest that
at smaller scales and limited areas, truncation effects or
other poorly-resolved scale interactions effectively damp
the models and inhibit estimates of error growth. Multi-
model ensemble techniques have shown limited success
in accounting for this problem in specific applications
(Hou et al. 2001; Stensrud et al. 2000; Ziehmann 2000;
Grimit and Mass 2002), but their relationship to daily
flow regimes are unclear. Flow-dependent calibration of
single-model ensembles, generated with an amplitude-
deficient model, is an alternative approach to improving
error-growth estimates.

In the more profound case of estimating the error
growth (e.g. doubling times) and the limit of predictabil-
ity in the real atmospheric system, the method could be
used with a large sample and observed atmospheric spec-
tra1 to obtain better estimates. Studies focusing on esti-
mating the predictability of baroclinic scales in the at-
mosphere demonstrate that results are model-dependent.
Lorenz (1965) estimated error doubling times of approx-
imately 4 days, with an implied skillful prediction to
10 days. Charney et al. (1966) followed with an esti-
mated 5-d error doubling time. With a coarse primitive-
equation model, Smagorinsky (1969) shortened the es-
timate to 3 days. More recently, Lorenz (1982) used
the ECMWF forecasting system to estimate 2.4 days.
His comparison with analyses showed an upper-bound
of 1.85 days. Even later, Savijärvi (1994) estimated a

1By assuming that a robust atmospheric spectrum is possible to ob-
serve.

doubling time of 1.7 days for the MRF. Simmons et al.
(1995) documented error doubling times in the ECMWF
system from 1981 to 1994 (not monotonically decreas-
ing), showing that they varied between 2.0 and 1.5 days.
Simmons and Hollingsworth (2002) continued the anal-
ysis through 2002, confirming that estimates of error
doubling times at baroclinic scales have decreased only
slightly in recent years. At least part of the tendency to-
ward shorter error-doubling times is attributable to better
representation of small scales, leading to more realistic
error growth. A fully-calibrated estimate of error growth
would place this estimate at the limit of our ability to ob-
serve atmospheric spectra, and here we provide a partial
calibration.

To explore flow-dependent calibration of ensemble
spread we first derive a simple relationship to determine
the under-estimation of error expected with an ensemble
of damped forecasts. It relies on knowledge of a response
function of one model relative to another, which can
have complex structure but is easy to compute for dis-
crete forecast times. We illustrate the effect with a sim-
ple smoother and a known response function that simu-
lates a reduction in forecast amplitude. Later, two im-
plementations of the Weather Research and Forecasting
(WRF) model are used to make several ensemble fore-
casts. The WRF was chosen because it is a new model
for which knowledge of ensemble behavior should ben-
efit a large community in the future (e.g. Toth 2001), but
the results are more general. Empirical, time-dependent,
response functions are calculated for each forecast and
used to explain differences in ensemble dispersion be-
tween ensembles of undamped and damped WRF runs. It
is shown that the dispersion of the ensemble of damped
WRF runs can be calibrated to agree with the ensem-
ble of undamped WRF runs. Finally, ensembles with
the Community Climate Model, version 3 (CCM3; Kiehl
et al. 1998 and references therein) are compared to pro-
vide a counter example in which more comprehensive
model error prevents a complete calibration. It is argued
that the uncalibrated portion of ensemble spread is one
measure the effects of the additional model error.

2. Ensemble response to damping

The goal of this section is to understand the expected
response of an ensemble to damped forecast spectra. The
smoother has a known spectral response function R(k),
where k is a wavenumber. Here, the response R is more
generally the ratio between two spectra, from different
models or a model and an analysis, and does not have to
be a spectral filter response in a strict sense. It can be
interpreted as a source of model error introduced to an
otherwise perfect model, where the error affects the am-
plitude permitted in a forecast. The concepts are illus-



trated with an example designed to isolate the stationary
impact of damping on ensemble dispersion.

For consistency with Leith (1974) we start with a per-
fect model, many forecast cases, and large ensembles.
The operators averaging over cases and ensembles will
be omitted for notational simplicity. One way to calcu-
late ensemble spread is to average the spatial variance
of the difference between all possible pairs of model
forecasts for the same forecast period. One forecast
pair is represented by P(x, t) and Q(x, t), with difference
S(x, t) = P−Q. The ensemble spread is then the spatial

variance of S, σ2
S(t) =

〈

(S−〈S〉)2
〉

, where the opera-

tor 〈∗〉 denotes a spatial average, and we understand that
σ2

S(t) is really the average over all possible pairs. Ini-
tially S(x,0) is very small, but it grows until the differ-
ence between any P and Q can no longer be distinguished
from the difference between two random selections from
climatology. Similarly, σ2

S is small and grows to satura-
tion at σ2

S = 2σ2
P, which is twice the climatological spa-

tial variance of the model forecast. Because our model is
perfect, σ2

Q = σ2
P in the climate average.

To further simplify the discussion and clarify the con-
cepts, we temporarily drop the dependence on time. In-
voking all of the simplifications, the ensemble spread can
be written as

σ2
S =

〈

(P−Q−〈P−Q〉)2
〉

. (1)

Expanding and using averaging rules,

σ2
S =

〈

P2〉−〈P〉2 +
〈

Q2〉−〈Q〉2 −2(〈PQ〉−〈P〉〈Q〉) ,
(2)

which is just the sum of the spatial variances σ2
P and σ2

Q
with twice the covariance cov(P,Q) subtracted (e.g. Strait
1989). Murphy (1988) outlines a similar procedure for
mean-square error.

The model states can be viewed in discrete spectral
space by defining the Fourier pair for P(x), with x = n∆x:

P(n) =
N−1

∑
k=0

P̂(k)e
i2πkn∆x

N , P̂(k) =
1
N

N−1

∑
n=0

P(n)e
−i2πkn∆x

N ,

(3)
and similarly for Q, where i =

√
−1, and the location x

varies discretely over [0 . . .N∆x]. Using equation (3) to
rewrite (2) in spectral space, and subtracting the mean,
gives

σ2
S =

N−1

∑
k=1

Ŝ2 =
N−1

∑
k=1

(

P̂2 + Q̂2 −2P̂Q̂
)

. (4)

The discrete spectral power of the difference field P−Q
is the ensemble spread as a function of wavenumber k
and can be written

Ŝ2 = P̂2 + Q̂2−2P̂Q̂ , (5)

for k = [0 . . .N/2]. This has been used commonly to
compare scale-dependent ensemble dispersion with spa-
tial variance P̂2 at discrete wavenumbers (e.g. Lorenz
1969; Boer 1984; Dalcher and Kalnay 1987; Errico and
Baumhefner 1987; Savijärvi 1994). One measure of a
useful forecast at a particular scale k is the condition
Ŝ2 < P̂2, and we use Ŝ2 = 2P̂2 as the saturation point.
For our purpose, equation (5) enables easy analysis of
the spectral response of σ2

S to any change in the spec-
tral characteristics of σ2

P or σ2
Q, such as could result from

damping or truncation.
Considering the spectra P̂, Q̂ as a reference, we can in-

troduce one simulated source of model error in the form
of a smoother that reduces the forecast amplitude. In
spectral space, applying the smoother to the model states
amounts to the operations:

p̂ = RP̂ , q̂ = RQ̂ . (6)

With (6), the spread at wavenumber k that results from
using damped model states is

Ŝ2
f = p̂2 + q̂2−2p̂q̂

= R2 (

P̂2 + Q̂2−2P̂Q̂
)

(7)

= R2Ŝ2 ,

Note that Ŝ describes the total ensemble dispersion, while
P̂ and Q̂ provide information about amplitude only.

For the discrete model at all scales, the spread in an
ensemble of damped model forecasts is then given by

σ2
S f

=
N−1

∑
k=1

Ŝ2
f =

N−1

∑
k=1

R2Ŝ2 . (8)

Thus if spread is determined by summing the spectral
coefficients Ŝ2 or Ŝ2

f for all pairs of model states, and the
spectral response function R is known, then the instanta-
neous effect of damping on ensemble spread can be de-
termined. The response R is a function of the damping
error in spectral space, and can be computed via equation
(6) when P̂ and p̂ are known.

As an example, consider a simple smoother applied to
all 1-D forecast pairs P(x, t), Q(x, t) in a large ensemble
on the domain from x = 0 to N∆x. A 1-2-1 smoother in
physical space with a coefficient 0.5 gives the response
in spectral space R = cos2(πkn∆x

N ) (e.g. Haltiner and
Williams 1980). Figure 1 shows both R and R2 as a func-
tion of wavenumber, demonstrating the R2 effect on the
ensemble spread in spectral space. In this example R is
constant but it need not be, as shown later.

A large sample of random statistical realizations are
created to illustrate the consequences of damping a
model. The parameters of the experiments are chosen
to qualitatively represent observed geopotential height



Figure 1: Filter response function (R) of a simple 2∆x
smoother, as a function of wavenumber where N denotes
the number of grid points in 1-D. The curve R2 is also
shown because it operates on the ensemble spread.

spectra and error growth. In the midlatitudes, small
scales become unpredictable sooner than large scales
(Lorenz 1969), and Ŝ2(k, t) ≥ P̂2(k, t) at high wavenum-
bers. Thus the saturation wavenumber ksat varies in-
versely with forecast lead time. For each experiment,
106 pairs of spectra are constructed by randomly rotat-
ing the complex Fourier coefficients of a smooth spec-
trum that has a slope of −5 at k > 10 (approximately
baroclinic scale). These rotations are a simple way to
represent the spectral signal of the difference between
two model forecasts with the same model. In the limit
of infinite ensemble members, they average to zero and
the mean spectrum of all P and Q exactly matches the
smooth spectrum. But for an infinite number of pairs of
forecasts the difference is finite and the spectrum of dif-
ferences shows the ensemble spread, which can be scaled
to represent any shape of spread spectrum. An example
of P̂2, Ŝ2, and Ŝ2

f when ksat = 32 for N = 256 is shown
in Fig. 2. This type of error is qualitatively consistent
with Leith (1974), Boer (1984), and Daley and Mayer
(1986), and should result in realistic error growth curves.
Because ksat is a proxy for forecast lead time, spreads of
damped and undamped forecast pairs are calculated for
every discrete ksat = [0 . . .N/2], thereby estimating the
effect of the smoother R on the ensemble spread from
initialization to its asymptotic limit.

To illustrate the effect of damping at a range of
scales, σ2

S f
/σ2

S is shown in Fig. 3a for a varying
number of grid points in the physical domain: N =
(32,64,128,256,512,1024). With a constant domain
size, increasing N increases the model resolution in phys-
ical space. In real NWP models, smoothing coefficients
are normalized by the grid spacing and are therefore ex-
plicitly tied to a physical scale. But in our case R is tied
to the grid, and by varying N we are actually varying the
scale selection of the smoother as if we were changing

Figure 2: Variance as a function of wave number. Shown
are the field itself (P̂2), the spread (Ŝ2), and the spread
after a 2∆x smoother has been applied to the fields (Ŝ2

f ).

the smoothing algorithm or coefficients. The curves for
the sharper R are toward the left (note the abscissa is re-
versed from the spectra plots). All of the curves asymp-
tote as ksat → 1, but the spreads for a broader R (smaller
N) asymptote at a lower level. Figure 3b shows that the
growth rates in Fig. 3a collapse when ksat is normalized
by the resolution determined by N, but the asymptotic
spread does not recover. The same can be expected from
choosing a sharper R, which will weaken the impact on
ensemble spread but not remove it entirely.

To further investigate the time-integrated effect of
damping on ensemble spread, σ2

S and σ2
S f

can be sep-
arated from the individual curves in Fig. 3a and trans-
formed to show time evolution. We assume exponen-
tial error growth according to a specified error-doubling
time of two days to approximate recent research results
(Savijärvi 1994; Simmons et al. 1995; Simmons and
Hollingsworth 2002), resulting in the ensemble disper-
sion for N = 128 and 256 shown in Fig. 4. It is clear that
damping inhibits both the growth rate and the asymptotic
limit of ensemble spread, and that the effect is greater
for the R with broader scale selection (N = 128). The
dependency on scale selection can be explained by rec-
ognizing that, when R exhibits sharper scale selection, it
acts on smaller scales containing less energy and saturat-
ing earlier in the forecast. The asymptotic limit is lower
because the damped spread will saturate relative to the
damped model, which has spectral amplitude below that
of the perfect model (Fig. 2), and the same dependency
on scale selection applies. As N increases and R is more
selective, the damped dispersion curves converge to the
undamped curve.

This example shows that an ensemble will be under-
dispersive if it is comprised of model forecasts that are



Figure 3: The response of the ensemble spread to damping in a model, as a function of saturation wavenumber. The
abscissa denotes the scale of error saturation, increasing (going up scale) to the right. Each curve in panel (a) is for
a different resolution, with higher resolution to the left, and the curves in panel (b) are normalized by the number of
grid points.

Figure 4: The effect of damping on error growth as estimated by ensemble spread for (a) a relatively low-resolution
(N = 128) and (b) double resolution (N = 256).



unrealistically damped compared to the real atmosphere
or a superior model, and that the effects are worse with
an unwise filter selection. The instantaneous effects are
demonstrated with a constant R that has no interaction
with the flow and has limited utility for a real forecast-
ing system, but conceptually and mathematically the re-
lationships are the same.

When a reference model or analysis is available for
computing P̂, then R(k, t) can be empirically estimated
by computing p̂ and using equation (6). In an en-
semble experiment, Ŝ2

f (k, t) is also easily measured.

Then Ŝ2(k, t) can be computed with equation (7) and
the dispersion with equation (4), thereby calibrating an
amplitude-deficient model.

The time- and flow-dependent response function R
computed with real NWP forecasts measures the time-
integrated effect of damping the spectra throughout a
forecast. This may result from a combination of implicit
numerical damping, explicit numerical filtering, subgrid-
scale parameterization schemes that explicitly mix (in-
cluding turbulence and convection schemes), and bound-
ary conditions. It should have complex structure that
does not at all resemble Fig. 1. The next section applies
the variable R to calibrate an ensemble of damped model
forecasts, and compares resulting dispersion characteris-
tics and calibration efficacy in the face of flow- and time-
dependency. Limitations of the method resulting from
additional deficiencies are addressed in section 4.

3. Flow-dependent calibration for amplitude defi-
ciencies

The remainder of this paper is concerned with ex-
tending the concepts developed in section 2 to include
time- and flow-dependent dynamics by testing them with
real NWP models. The experiments here are controlled
to isolate the effects of damping. To begin, spectra of
the forecasts and dispersion characteristics of ensembles
with both undamped and damped versions of the WRF
are compared. All results shown are for 50.0 kPa geopo-
tential height, interpolated to a Gaussian grid, and spec-
tra are computed with spherical harmonics.

The focus of the WRF design is as both a research and
operational model to be implemented with grid-spacing
of 1-10 km, though it should also be accurate and effi-
cient at larger scales. It contains a suite of modern phys-
ical parameterization schemes built around three options
for dynamical core. Here we configure the WRF with
full physics, and employ a mass-based vertical coordi-
nate with split-explicit high-order numerical schemes as
described in Skamarock et al. (2001). One potential ad-
vantage of the higher-order numerical schemes available
in the WRF is that truncation and implicit diffusion from
the numerics should be minimal and the effective reso-

lution should approach the true resolution as determined
by the grid spacing.

A model domain is chosen that covers the entire north-
ern hemisphere, with horizontal grid spacing ∆X = ∆Y =
90 km, true at 45◦N on a polar-stereographic projec-
tion. The projection on a hemispheric domain intro-
duces substantial grid distortion in the tropics, but it
minimizes boundary effects. Relatively large grid spac-
ing provides a fair agreement with gridded analyses in
the midlatitudes, minimizing interpolation errors for ini-
tial and boundary conditions and facilitating comparison
with analyses in future work. Here we use the NCEP fi-
nal analyses, available twice daily at 1◦ grid spacing on
a cylindrical equidistant grid.

We start by designating the undamped WRF, and en-
sembles run with it (denoted WRF), to be the perfect ref-
erence against which model changes are evaluated. As
in the illustrative case of the last section, one source of
simulated model error is introduced by applying a 2-
D, second-order diffusion term that explicitly (and lo-
cally in time) reduces forecast spatial variance at small
scales. We denote the resulting damped WRF with DMP.
The horizontal diffusion coefficient is chosen as Kh =
90000 m2 s−1, corresponding to ∆X . This type of dif-
fusion is purely numerical and depends only on the grid
and Kh. Ensembles run with DMP (denoted DMP) are
compared to ensembles WRF, and R is used to explain
the differences in ensemble spread. Here R is the ratio,
in spectral space, of the DMP to the WRF control runs,
and it is computed separately for each forecast period and
lead time.

Random perturbations are applied with the Errico-
Baumhefner technique (e.g.
Errico and Baumhefner 1987; Tribbia and Baumhefner
1988; Mullen and Baumhefner 1989, 1994; Stensrud
et al. 2000), which approximates analysis errors as es-
timated by Daley and Mayer (1986), to generate 10-
member ensembles of initial conditions. Control (un-
perturbed) initial conditions are given by the NCEP final
analyses. The WRF model currently does not have an
option for explicit balancing (such as a normal mode ini-
tialization). The adjustment, and the fact that the random
perturbations are not constrained to lay on the model at-
tractor, lead to spurious inertio-gravity waves that dis-
perse over the first few hours of the forecast (Anderson
and Hubeny 1997). As the forecasts regain balance with
respect to the model equations, the ensemble spread de-
creases. Here we ignore that adjustment period and ex-
amine the dispersion characteristics after the minimum
in spread.

Cases were selected by finding six different flow
regimes during the 2001-2002 northern hemisphere cool
season that are considered independent of each other (Ta-
ble 1). We present averages over the six cases for sum-



Table 1: Forecast cases that comprise the averages pre-
sented in this paper.

Initialization Time

00 UTC 24 November 2001

00 UTC 20 December 2001

12 UTC 08 January 2002

00 UTC 30 January 2002

12 UTC 06 February 2002

00 UTC 16 February 2002

mary purposes only, but each case is treated indepen-
dently. Figure 5 shows that error growth, as estimated by
ensemble dispersion, varies widely between the cases.

A comparison of DMP and WRF ensemble dispersion
is shown in Fig. 6. Spread in the WRF ensembles grows
faster than spread in the DMP ensembles over the first
4.5 forecast days. For any single case, error growth esti-
mated from the WRF dispersion curve is faster than that
estimated from the DMP curve. Assuming this behav-
ior continues to the asymptotic limit, a shorter estimate
of the limit of predictability would result from using the
WRF curve.

Comparing spectra of the DMP and WRF 4.5-day
forecasts (Fig. 7) further elucidates the effect of damp-
ing. When undamped, the dispersion is saturated through
the high-wavenumber part of the spectrum. But relative
to the undamped WRF forecast the dispersion of DMP
forecasts does not saturate at any scale and the total dis-
persion (area under the curve) of ensemble DMP lags be-
low the dispersion of WRF. The ratio of control spectra
results in R < 1 almost everywhere in Fig. 7b.

These results confirm that applying damping to com-
ponent forecasts of an ensemble strongly modulates the
ensemble spread in a manner similar to the effect demon-
strated with a simple statistical model in section 2. The
instantaneous effect is similar to Fig. 2, but the effect of
the filter spreads up scale as the forecast progresses. Here
the damping is 2∆X diffusion that produces the fully-
developed, time-integrated response function shown in
Fig. 7b, which accounts for all of the scale interactions
leading to amplitude differences between the forecasts

Figure 5: Dispersion of 50.0 kPa geopotential heights in
the ensembles of undamped (WRF) forecasts for each of
the six cases in Table 1.

Figure 6: Dispersion of 50.0 kPa geopotential heights in
the ensembles of undamped (WRF) and damped (DMP)
forecasts.



Figure 7: In (a), the WRF (thick dotted line) and DMP (thick solid line) 50.0 kPa geopotential height spread in spectral
space, compared to the WRF control forecast spectrum (thin solid line). In (b), a response function is shown, calculated
as the ratio of DMP to WRF forecast spectra. Results are for 4.5-day forecasts.

from two different models.
The flow- and time-dependent calibration potential

of R can be easily checked by computing R(k, t) =
p̂(k, t)/P̂(k, t), and using equation (7) to correct the
damped dispersion Ŝ2

f (k, t) to Ŝ2(k, t). The result, av-
eraged over all the cases, is shown in Fig. 8. The cor-
rected (COR) dispersion, closely follows the dispersion
of the ensemble of undamped WRF runs. This implies
that the time-dependent properties of R contain most of
the time-integrated information required to relate ensem-
ble dispersion with these two different models, and that
an estimate of R can be used to successfully calibrate en-
semble spread for a certain class of model error.

Distinguishing the effects of deficient spatial variance
from the total ensemble spread helps guide discussion
on the generality of these results. The fact that the dif-
ference between the WRF and DMP ensemble spreads
can be almost entirely explained by the measured spec-
tral response (Fig. 8) suggests that the accumulated ef-
fect of damping is focused on forecast amplitude at lead
times up to 4.5 days. This calibration method will be
most useful when two models differ primarily in the fore-
cast spatial variance (P̂2). It should be applicable for
model differences such as other numerical smoothers and
perhaps some differences in physical parameterization
schemes and boundary conditions. But the calibration
is less likely to be successful for wholesale differences
in numerical discretization schemes because they could
have a large effect on other model error modulating the
ensemble dispersion. The next section explores the lim-
itations of the calibration by introducing more compre-
hensive model error.

Figure 8: Dispersion of the ensemble with undamped
(WRF) and damped (DMP) WRF forecasts. The cor-
rected (COR) dispersion results from using the R2 to pre-
dict the dispersion without damping.



Figure 9: Day-six 50.0 kPa geopotential (m) height control forecasts (left column) and corresponding ensemble
spaghetti diagrams (right column) for (a, b) the undamped WRF, (c, d) the damped WRF, and (e,f) the CCM, all
valid 00 UTC 30 November 2001. Contour intervals are 60 m, and the 5880 m contour is plotted in the spaghetti
diagrams.



4. Limitations of the calibration: other sources of
model error

This section compares the WRF ensemble forecasts
from the last section with CCM ensembles (denoted
CCM) to expose limitations of the calibration method.
The CCM (Kiehl et al. 1998) is discretized spectrally
on the globe with energy-conserving schemes and the
forecasts are not affected by lateral boundaries. Because
of the discretization, the lateral boundaries in the WRF,
and different physical parameterization schemes in each
model, the difference between the WRF and the CCM is
far greater than the difference between the damped and
undamped WRF. Thus error-growth characteristics will
also be different. Ensembles are run with the CCM for
the same cases as the WRF, where ensembles CCM are
generated with the same technique as ensembles WRF.
The CCM is considered the perfect reference for erro-
neous model DMP, and the WRF the perfect reference for
erroneous model CCM. The calibration will account for
model error due to damping, and the uncalibrated spread
measures the effect of the remaining model error on the
total spread.

An example is useful to gain an appreciation for some
of the differences between forecasts and ensembles with
the different models. Figure 9 shows six-day forecasts
from the WRF, DMP and CCM, valid at 00 UTC 30
November 2001. Comparison of the WRF to DMP con-
trol forecasts (panels a and c) shows a clear difference
in forecast amplitude at all scales. Although some syn-
optic features are in slightly different locations, many of
them are zonally collocated. For example, note the cutoff
lows just off the west coast of North America and over
Europe, and the ridging over western Asia. In both en-
sembles WRF and DMP (panels b and d) the locations
of highs and lows also closely overlap, but the ensemble
spread is greater in WRF with respect to the amplitude of
features at all scales. The small ensemble spread in DMP
demonstrates the physical effect of the applied damping.
While the CCM forecast (panel e) shows synoptic ampli-
tude that is similar to DMP, synoptic features are located
differently. A cutoff low is forecast over western Asia
and ridging is forecast off the west coast of North Amer-
ica. Comparing the spaghetti diagrams also shows that
within the CCM ensemble, the locations of both small-
and large-scale features have spread more than in either
WRF or DMP. This example was arbitrarily chosen and
similar behavior can be observed for all of the cases in
Table 1.

The CCM ensemble dispersion curve, compared to the
WRF and DMP dispersion, is shown in Fig. 10. Spread in
the WRF ensembles grows faster than spread in the CCM
ensembles over the first 4.5 forecast days, but spread in
the DMP ensembles grows slower. Error growth esti-

Figure 10: Ensemble dispersion versus forecast hour for
the WRF (solid line), the damped WRF (dashed line),
and the CCM (dotted line). The curves are the average of
50.0 kPa geopotential height ensemble dispersion for all
the cases in Table 1.

mated from the WRF (DMP) dispersion curve is faster
(slower) than that estimated from the CCM.

Calibrating the CCM to the WRF curve or the DMP
to the CCM curve2 will not be effective given the
CCM/WRF and DMP/CCM responses (Fig. 11). The
CCM/WRF response shows magnitudes that are compa-
rable to the DMP/WRF values of R in Fig. 7b through
wide spectral bands despite the far smaller difference in
spread between the CCM and WRF dispersion. Thus the
calibration will overcorrect. Conversely, the DMP/CCM
response remains near one throughout the spectral range,
which will result in very little correction. This behavior
is confirmed when the calibration is applied in Fig. 12.

When one model is a reference or truth, then one mea-
sure of the relative effect of model error on dispersion
is the differences between the dispersion curves. After
calibrating for amplitude differences, the results shown
in Fig. 12 are useful to estimate the remaining relative
error growth in the three models. We know from sec-
tion 3 that this calibration corrects for deficient spatial
variances represented by amplitude deficiencies. The
forecast fields (Fig. 9) indicate similar amplitude in the
DMP and CCM, and different amplitude in the WRF.
The DMP/CCM similarity in forecast amplitude is also
documented in Fig. 11b. Then from Fig. 12 we can de-
duce that the contribution to ensemble spread in CCM
attributable to other sources, besides spatial variance, is
greater than its contribution to the spread of WRF. The
spaghetti plots in Fig. 9 are consistent with this. Figure
13 illustrates this concept, and it can be scaled for any

2Calibration can be performed in either direction and we choose to
increase the ensemble spread for consistency with section 3.



Figure 11: The 4.5-day response function R computed as the ratio of control forecast 50.0 kPa geopotential height
spectra as (a) CCM/WRF and (b) DMP/CCM.

Figure 12: In (a), the 50.0 kPa geopotential height dispersion of ensembles CCM and WRF, with COR showing the
CCM ensemble calibrated to the WRF ensemble using R in Fig. 11a. In (b), the dispersion of ensembles DMP and
CCM, with COR showing the DMP ensemble calibrated to the CCM ensemble using R in Fig. 11b.



Figure 13: Schematic qualitatively showing the effects of
model error on ensemble spread. Contributions from am-
plitude (amp) and other deficiencies to the total ensem-
ble spreads are shown separately. The calibrated portion
(corr) is related to the difference in amplitude dispersion
for each pair.

forecast lead time with all of the dispersion bars becom-
ing very small at initialization. Thus additional compo-
nents to calibration will be required to account for all
sources of model error.

A historical analysis could also be used to calibrate an
overly-damped model and assign an absolute magnitude
to the effects of other model error sources. For example,
replace the WRF with a set of analyses and calibrate en-
semble CCM with an R computed from CCM forecasts
and verifying analysis spectra. If the calibrated ensemble
spread grows faster or slower than an estimate of actual
error growth, then the CCM has additional model error
that affects its error prediction, and the effect is quan-
tified by the difference between the COR curve and the
actual error growth curve.

5. Summary and conclusions

The sensitivity of ensemble spread to flow-dependent
forecast spatial variance was explored, and a calibration
method was proposed to account for it. First, we derived
the effect that damping an ensemble-generating model
has on ensemble spread. This was achieved by extending
the relationships explained in Leith (1974) to compute
scale-dependent spatial variances (forecast amplitude) in
spectral space. In the case of stationary climate statistics
the relationship between forecast amplitude and ensem-
ble spread is clear, and a statistical model served as an
example to illustrate the consequences of deficient am-
plitude. We hypothesized that for an individual forecast
the same relationships provide a flow-dependent correc-
tion for the spread of an under-dispersive ensemble. The

hypothesis was tested by comparing spectral characteris-
tics of two versions of the WRF model — one that was
completely undamped and one to which a grid-dependent
diffusion term was applied. Dispersion of an ensemble of
undamped WRF forecasts was faster than an ensemble of
damped WRF forecasts, and could be explained by more
spatial variance in the undamped WRF model. An empir-
ical time-dependent spectral response R, computed as the
ratio of the damped to undamped WRF spectra for each
of six independent cases, was used to correct the spread
of the ensemble of damped model forecasts to agree with
the spread of the ensemble of undamped model forecasts
at all lead times. Finally, it was demonstrated that ad-
ditional sources of model error contributing to ensemble
spread is a limitation of the calibration method, but that
the uncorrected portion of spread is a measure of the ef-
fects of that error.

The implications for predictability research and en-
semble forecasting are greater when the goal is model
trajectories that diverge at the same rate as trajectories
in the real atmosphere, thereby allowing error prediction
with model forecasts. Although this calibration does not
change any trajectories (though in principle it could), it
will facilitate error prediction that is consistent with the
flow of the day when amplitude deficiencies are fore-
most. The reference for computing R can be either ob-
servations or a superior model. In the first instance,
some stationarity of variance must be assumed and it
only makes sense to calibrate hemispheric or global en-
sembles to hemispheric or global observations. A his-
torical analysis could lead to a better estimate of scale-
dependent error growth and limits of predictability in the
atmosphere. In the second, a less expensive model (such
as a LAM) can be used to generate ensembles that can be
calibrated to a global model. Only one expensive global
run is needed to compute an R that could account for
boundary conditions or a lack of scale interactions.

Accurate error prediction in all situations requires that
a calibrated ensemble accounts for the effects of all
model error on ensemble spread. Section 4 documents
the principal limitation of the proposed calibration: the
case that an ensemble to be calibrated is generated from a
model containing comprehensive error beyond what ap-
pears as damping. This arises from the fact that R con-
tains information about amplitude only, while ensemble
spread is modulated by all types of model error. Then
partial calibration provides a measurement of the effect
of the additional model error.

This calibration approach is a first step and addi-
tional research may extend its utility. A scale- and
flow-dependent parameterization of model error would
be useful for four-dimensional data assimilation methods
(c.f. Dee 1994). More generally, a better understanding
may lead to better-calibrated ensemble forecasts, a more



robust method for predicting how model changes affect
ensemble performance, and a useful diagnostic for model
error.

REFERENCES

Anderson, J. and V. Hubeny, 1997: A reexamination of
methods for evaluating the predictability of the atmo-
sphere. Nonlinear Processes Geophys., 4, 157–165.

Boer, G., 1984: A spectral analysis of predictability and
error in an operational forecast system. Mon. Wea.
Rev., 112, 1183–1197.

Charney, J. G., R. G. Fleagle, H. Riehl, V. E. Lally, and
D. Q. Wark, 1966: The feasibility of a global obser-
vation experiment. Bull. Amer. Meteor. Soc., 47, 200–
220.

Dalcher, A. and E. Kalnay, 1987: Error growth and pre-
dictability in operational ECMWF forecasts. Tellus,
39, 474–491.

Daley, R. and T. Mayer, 1986: Estimates of global analy-
sis error from the global weather experiment observa-
tional network. Mon. Wea. Rev., 114, 1642–1653.

Dee, D., 1994: On-line estimation of error covariance pa-
rameters for atmospheric data assimilation. Mon. Wea.
Rev., 123, 1128–1145.

Errico, R. and D. Baumhefner, 1987: Predictability ex-
periments using a high-resolution limited-area model.
Mon. Wea. Rev., 113, 488–504.

Grimit, E. and C. Mass, 2002: Initial results of a
mesoscale short-range ensemble forecasting system
over the Pacific Northwest. Wea. and Forecast., 17,
192–205.

Hacker, J., S. Krayenhoff, and R. Stull, 2002: Ensem-
ble experiments on numerical weather prediction er-
ror and uncertainty for a North Pacific forecast failure.
Wea. Forecasting, in press.

Haltiner, G. and R. Williams, 1980: Numerical Predic-
tion and Dynamic Meteorology. John Wiley and Sons.

Hamill, T. and S. Colucci, 1998: Evaluation of Eta-RSM
ensemble probabilistic precipitation forecasts. Mon.
Wea. Rev., 126, 711–724.

Hou, D., E. Kalnay, and K. Drogemeier, 2001: Objective
verification of the SAMEX ’98 ensemble experiments.
Mon. Wea. Rev., 129, 73–91.

Kiehl, J., J. Hack, G. Bonan, B. Boville, D. Williamson,
and P. Rasch, 1998: The National Center for Atmo-
spheric Research Community Climate Model: CCM3.
J. Climate, 11, 1131–1150.

Leith, C., 1974: Theoretical skill of monte carlo fore-
casts. Mon. Wea. Rev., 102, 409–418.

Lorenz, E., 1965: A study of the predictability of a 28-
variable atmospheric model. Tellus, 17, 321–333.

— 1969: The predictability of a flow which possesses
many scales of motion. Tellus, 21, 289–307.

— 1982: Atmospheric predictability experiments with a
large numerical model. Tellus, 34, 505–513.

Mullen, S. and D. Baumhefner, 1989: The impact of
initial condition uncertainty on numerical simulations
of large-scale explosive cyclogenesis. Mon. Wea. Rev.,
117, 2800–2821.

— 1994: Monte carlo simulations of explosive cycloge-
nesis. Mon. Wea. Rev., 122, 1548–1567.

Murphy, A., 1988: Skill scores based on the mean square
error and their relationships to the correlation coeffi-
cient. Mon. Wea. Rev., 116, 2417–2424.

Savijärvi, H., 1994: Error growth in a large numerical
forecast system. Mon. Wea. Rev., 123, 212–221.

Simmons, A. and A. Hollingsworth, 2002: Some aspects
of the improvement in skill of numerical weather pre-
diction. Quart. J. Roy. Meteo. Soc., 128, 647–677.

Simmons, A., R. Mureau, and T. Petroliagis, 1995: Er-
ror growth and estimates of predictability from the
ECMWF forecasting system. Quart. J. Roy. Meteo.
Soc., 121, 1739–1771.

Skamarock, W., J. Klemp, and J. Dudhia, 2001: Pro-
totypes for the WRF (Weather Research and Fore-
casting) model. Ninth Conference on Mesoscale Pro-
cesses, Amer. Meteor. Soc., J11–J15.

Smagorinsky, J., 1969: Problems and promises of deter-
ministic extended range forecasting. Bull. Amer. Me-
teor. Soc., 50, 99–164.

Stensrud, D., J.-W. Bao, and T. Warner, 2000: Using
initial condition and model physics perturbations in
short-range ensemble simulations of mesoscale con-
vective systems. Mon. Wea. Rev., 128, 2077–2107.

Strait, P., 1989: A First Course in Probability and Statis-
tics with Applications. Harcourt Brace Jovanovich,
599 pp.



Toth, Z., 2001: Ensemble forecasting in WRF. Bull.
Amer. Meteor. Soc., 82, 695–697.

Tribbia, J. and D. Baumhefner, 1988: The reliability of
improvements in deterministic short-range forecasts in
the presence of initial state and modeling deficiencies.
Mon. Wea. Rev., 116, 2276–2288.

Ziehmann, C., 2000: Comparison of a single-model EPS
with a multi-model ensemble consisting of a few op-
erational models. Tellus, 52, 280–299.


