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1. Introduction
     In order to accurately assess the potential impact of
a possible climate change on patterns of precipitation
variability, it is important to first understand and quantify
the characteristics of natural fluctuations in precipitation.
Land-atmosphere-ocean interactions include a variety of
feedbacks that have time scales of years or longer,
producing a range of low frequency variations in
atmospheric variables.  One well-known mode of natural
variability is associated with El-Nino/Southern
Oscillation (ENSO), a coupled mode to the ocean and
atmosphere that is known to influence the space-time
variability of precipitation and temperature in different
regions of the globe.
     The relationship between sea surface temperature
anomalies associated with ENSO and changes in
seasonal or annual precipitation is well documented in
the scientific literature.  Relatively few studies have
considered changes in the intraseasonal characteristics
of precipitation variability between El Nino (La Nina)
events and neutral winters.   In this paper, changes in
the intraseasonal characteristics of precipitation
associated with ENSO are investigated and their
significance estimated.
     Most studies have identified changes in the
intraseasonal variance of precipitation or temperature
after pooling temperature or precipitation data to form a
composite of El Nino, La Nina or neutral years.  Pooling
the data in this fashion ignores the possibility of shifts in
the mean between individual El Nino or La Nina years
that may or may not be related to SST anomalies.  The
significant event-to-event differences in the magnitude
and location of SST anomalies and large year-to-year
variability of precipitation must also be considered when
assessing the significance of changes in the variance.
To avoid overestimating the impact of ENSO on
intraseasonal variability, the significance of changes in
the variance must be estimated by considering
precipitation anomalies from each event separately.
     Precipitation possesses significant variability on
daily, synoptic, monthly and subseasonal time scales,
each of which may be dominated by a different
dynamical mechanism. If the changes in precipitation
during ENSO events are scale-dependent, it is
important to identify the dominant timescale so that a
physical mechanism can be assigned to the observed
changes.
     In this paper, Granger causality analysis is used to
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identify regions in the United States where there exists a
statistically significant causal relationship between SST
anomalies, as captured by the Nino-3.4 index, and
changes in the seasonal precipitation totals.  After
determining that lagged values of the SST anomalies
contain significant information about the current state
of precipitation anomalies, the precipitation timeseries
from each gridpoint in the daily precipitation dataset are
separated into the 9 strongest El Nino, La Nina and 9
most neutral winters based on the sign and magnitude
of the Nino-3.4 index.
     If there exists a significant relationship between
seasonal precipitation anomalies and SST anomalies in
a region of the United States, is the probability of
observing an increase or decrease in the seasonal
mean or intraseasonal variance is greater during a
warm (El Nino) or cold (La Nina) event than in any of the
other winters in the dataset?  To explore this question,
anomalies in the mean or variance are calculated for
each of the winters in the dataset by subtracting the
neutral winter average estimated by pooling all of the
neutral winters together.  The number of winters for
which the mean or variance is larger or smaller than the
neutral winter average is tabulated and the significance
of the probabilities of observing an increase or decrease
is estimated by the Fisher exact test using the
hypergeometric distribution.
     Given a significant probability of observing an
increase or decrease in the variance during ENSO
events, do increases or decreases in the variance
exhibit a characteristic timescale or does the variability
change across scales?  To explore this possibility, the
timeseries are decomposed with the maximal overlap
discrete wavelet transform (MODWT) and the variance
estimated at intraseasonal timescales ranging from 2
days to 64 days.  This provides an estimate of changes
in the variance on synoptic (4 to 16 days), monthly (16
to 32 days) and subseasonal (32 to 64 days)
timescales, all of which can be associated with known
physical processes in the climate system.

2.  Previous Studies of ENSO-Related
Variability
     When considering the variability of precipitation,
many different estimates of the dominant timescale of
intraseasonal variability have been offered
     Using a gridded dataset of daily precipitation, Ye and
Cho (2001) found two distinct scales of intraseasonal
oscillations in precipitation, one around 37 days and the
other around 24 days, that each explained 11% of the
variance.  Analyzing the same gridded dataset with a
combination of the discrete wavelet transform and
principal component analysis, Joseph et al. (2000)
found that four different timescales of variability explain



most of the spatial fluctuations in precipitation.  They
found that the dominant scales of variability were the
synoptic (16 hours to 22 days) explaining 40.13% of the
spatial variance, seasonal (43 to 341 days) explaining
30.5% of the variance, subdiurnal (2 to 16 hours)
explaining 20.72% of the variance and climatic scales
(longer than 2 years) explaining 5.33% of the variance.
They also report strong seasonal variations in these
patterns, with the fluctuations in winter being dominated
by synoptic scale variability and those in summer by
subdiurnal scale variability.
     The physical mechanisms behind anomalous
precipitation act on many different time and space
scales.  Low frequency variability in the atmosphere,
either that associated with known climate oscillatory
processes or decadal variability, is known to influence
the patterns of precipitation in space and time.
     Though most of the variance in precipitation is on
timescales much shorter than a month, the majority of
studies focusing on the variability of precipitation have
used monthly, seasonal or yearly data. Del Sole (2001)
suggests that anomalies in monthly averages of
geopotential height may arise from a few episodes
lasting less than a few weeks that dominate the
variance by means of their large amplitudes rather than
their persistence.  Several recent studies suggest that
the characteristic timescales for a number of low
frequency oscillations in the atmosphere, as measured
by their e-folding time, may be on the order of several
days.
     Compo et al. (2001) find that the effect of ENSO on
500-mb geopotential height variability depends strongly
on the time scale used for the analysis.  In particular,
the spatiotemporal patterns of variability on the synoptic
(2 to 7 days), intra-seasonal (8 to 45 days) and monthly
timescales are all sharply different.  In some regions,
the variability of height anomalies on the synoptic scale
differ in sign with those on intra-seasonal scales
canceling out in large area averages and leading to
insignificant sub-seasonal variability.  Anomalies in the
daily NCEP reanalysis product precipitation data were
found to be scale independent. (Compo et al., 2001)
     DelSole (2001), using a measure of the decorrelation
time to find patterns in space that maximize the e-
folding time of the correlation function of daily anomaly
fields of the 500 hPa geopotential height, found that the
maximum decorrelation time associated with the Arctic
Oscillation is on the order of 12 to 15 days.
     Feldstein (2000), analyzing daily 300-mb
geopotential height data from the NCAR-NCEP
reanalysis data product between 1958 and 1997,
suggests that the temporal evolution of the North
Atlantic Oscillation, Pacific North America and West
Pacific teleconnection patterns, but not ENSO, can be
interpreted as Markov Processes with characteristic
time scales between 7.4 and 9.5 days.  Using spectral
analysis, Feldstein found evidence of an oscillation with
a period of about 20 days in the daily ENSO
teleconnection pattern.
     These findings suggest that anomalies in monthly or
seasonal averages associated with global
teleconnections may arise from a few episodes lasting

less than a couple of weeks that dominate the variance
by means of their large amplitudes rather than their
persistence.  To explain a majority of the variance
associated with such globally active teleconnections,
daily or finer data should be used.
     Kumar and Hoerling (1997) suggested that the
observed spatial patterns of the extratropical circulation
anomalies normally associated with ENSO are not a
deterministic function of SST anomalies.  They
investigated the observed event-to-event variability of
ENSO by averaging the 500-mb geopotential height
anomalies from the 7 strongest El Nino events during
the period from 1950 to 1994 to form a composite
response.  Their results showed that the response of
each individual event differed substantially from the
composite, demonstrating the importance of examining
precipitation anomalies observed during each event
separately.
3. Data
     For this study, daily precipitation timeseries from
individual gages as well as data from a finely gridded
dataset was analyzed.  The gridded data, on a 0.25°
longitude x.25° latitude grid, is part of the Daily US
UNIFIED Precipitation dataset provided by the NOAA-
CIRES Climate Diagnostics Center. The dataset covers
the period January 1, 1948 to December 31, 1998 and
includes 50 winters (DJF) with 9 each of El Nino and La
Nina events.  There are more than 13000 station reports
each day for 1948-1991 and about 8000 from 1992 on.
The dataset, complete for the 50 years, contains 13726
points on the land surface.
    The data is divided into individual winter and then
further subdivided into El Nino, La Nina and neutral
seasons based on the average monthly Nino-3.4 index
for each particular season and year.  (Mason and
Goddard, 2001).  Those seasons with sea surface
temperature anomalies greater than 0.5 °C are
classified as El Nino while those with magnitudes less
than -0.5 °C are classified as La Nina.  All seasons with
sea surface temperature anomalies between -0.5 °C
and 0.5 °C are classified as neutral. To make
comparisons between seasons and different phases of
ENSO easier, only the 9strongest El Ninos and La
Ninas and 9 most neutral events (smallest sea surface
temperature anomalies) for each season were
considered in the analyses.

4. Methods and Results
4.1 Granger Causality Analysis
     The Granger causality between the Nino-3.4 SST
and seasonal precipitation anomalies is estimated over
the United States using the procedure described by
Kaufmann and Stern (1997).  Granger causality is an
improvement over lagged correlation analysis, which
suffers in the presence of autocorrelation between
fields, though it is no more able to imply a physical
reason for the statistical relationship.
     The procedure consists of two steps.  In the first,
two-way interactions between the monthly SST anomaly
and the monthly precipitation anomaly at each gridpoint
are estimated using the following vector autoregression
(VAR) model evaluated with s time lags
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where the a’s, b’s and g’s are regression coefficients
and the e’s are error terms.
     To establish causality between the SST and
precipitation anomalies, the VAR model is estimated
again after removing the causal variable.  To test
whether the Nino-3.4 SST anomalies cause variability in
precipitation totals, the model is estimated again
removing the lagged SSTs from the precipitation
equation as follows:
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To estimate whether the restricted model is significantly
different from the unrestricted estimate, we calculate a
test statistic that can be evaluated with an F distribution,

† 

q =
RSSr - RSSu( ) /s
RSSu / T - k( )                                           (3)

in which RSS is the squared sum of the residuals, T is
the number of observations, k is the number of
regressors in the unrestricted model and s is the
number of time lags used.  The subscripts r and u refer
to the restricted and unrestricted models respectively.
The null hypothesis that the eliminated variable does not
cause variability in the dependent variable (seasonal
total) can be estimated by comparing the test statistic
with an F statistic with s and T-k degrees of freedom in
the numerator and denominator respectively.  We reject
the null hypothesis of no causal order for values of q
with a probability greater than 0.05.  If the null
hypothesis can be rejected, it can be concluded that the
lagged values of SST contain information about the
current value of precipitation beyond that of the lagged
precipitation alone.
     To estimate the causal relationship between winter
seasonal precipitation total and the average winter SST
anomaly, Granger causality analysis was performed
using seasonal totals and seasonal averages of the
Nino-3.4 anomaly.
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In this case, the variable under consideration is winter
precipitation and the lagged values are fall (lag 1),
summer (lag 2) and spring (lag 3).
     The model was fit using seasonal totals, regressing
winter precipitation anomalies first against fall and

summer SST and precipitation anomalies and then
against those from the previous fall, summer and spring
(Figure 1.).  When considering only the previous fall and
summer, we find a significant causal relationship at
17.5% of the gridpoints, covering Florida and the
southwest and an area along the southern edge of the
country stretching from the southwest to the southeast.
When considering spring as well, the same areas of the
country demonstrate a significant relationship between
SST and precipitation covering 15.8% of the gridpoints.

    Having identified a region that demonstrates a causal
relationship between the SST temperature anomalies
and seasonal precipitation totals, significance of
changes in the mean and variance between El Nino, La
Nina and neutral winters based on the magnitude of the
SST anomalies is estimated.

4.2 Changes in the Mean and Variance
     The daily values from all the El Nino, La Nina and
neutral winters are pooled and a mean and process
variance calculated for each type of event.  Figure 2
shows the ratio of the El Nino to neutral and La Nina to
neural mean and Figure 3 the same for the variance.
    We find that at gridpoints where the mean increases
(decreases) during El Nino winters, it decreases
(increases) during La Nina winters, with increases in the
southwest and southern Florida during El Nina winters
and decreases along the northern half of the country
and through the Ohio Valley.  The opposite pattern is
observed during La Nina winters with small increases
along the northern part of the country and a large
increase in the Ohio Valley.  The changes in the
variance are similar to the changes in the mean, with
the largest changes occurring in the southwest and
along the Gulf coast in El Nino winters and in the Ohio
Valley region during La Nina winters.
     To assess the statistical significance of the changes
in the mean or variance between the ENSO winters and
neutral winters, the Fisher exact test (Mason and
Goddard (2001) is applied to estimate the probability of
selecting 9 winters at random (the 9 strongest El Nino
winters for example) out of the 50 in the dataset that
have a positive anomaly in the mean or variance, where
a seasonal anomaly is defined as the difference
between the mean or variance in any individual winter
and the neutral winter mean or process variance
calculated by pooling all the events together.  The test is



used to estimate the significance of an increase or
decrease in the mean or variance, not the magnitude of
the change.
      Figure 2 shows the results of the Fisher exact test
for statistically significant increases in the mean and
variance for El Nino winters (p<0.05). During El Nino
winters, approximately 23.4 percent of the gridpoints
experience a positive seasonal anomaly in the mean
while the variance increases at 13.8 percent of the
gridpoints. We find no large, spatially coherent regions
with statistically significant changes in the mean or
variance during La Nina winters or decreases during El
Nino winters.  We also find no statistically significant
changes (p<0.05) between individual neutral winters
and the neutral year average for either the mean or the
variance, suggesting that the neutral winter average
adequately captures the neutral winter characteristics.

4.3 Wavelet Analysis of Variance
     The discrete wavelet transform (DWT) is a signal
processing technique that offers several advantages
over traditional spectral analysis techniques.  The DWT
has the advantage of being scale adaptive, allowing the
precipitation time series to be decomposed into a
collection of new time series, each of which represents
the variability in the signal over a characteristic band of
scales (e.g., subdiurnal, synoptic, intra-seasonal, etc.)
     The wavelets form an orthonormal basis and are
obtained by the translation and dialation of a mother
wavelet, y(t), such that
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The series expansion of a function, f(t), is
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where the summation is taken over all scales, n, and all
translations, m.  The wavelet coefficients, Dn,m , capture
the variability of the timeseries at time t = m2n and scale
l= 2n. (Joseph et al. 2000)  Because the wavelets form
a linear basis, a wavelet spectrum can be defined that
represents the total energy (variance) at each frequency
l,

E Dn n,m
m
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2
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     Unlike Fourier coefficients, which capture variability
over the entire timeseries, the DWT captures variability
associated with local features in a timeseries, producing
a better estimate of the variance attributable to local,
intermittent variations in a timeseries.  The DWT can
also be used to analyze timeseries data that is not
stationary, one of the primary limitations of Fourier
analysis.  Unfortunately, the length of a timeseries must
be of length 2N where N can be any integer.  In this
application, the timeseries from each gridpoint are not of
a dyadic length, with the 51 years of data containing
18627daily values.
     Rather than zero padding or arbitrarily truncating the
timeseries, which due to the episodic nature of
precipitation may potentially exclude one or more
periods of precipitation, we apply the maximum
overlapping discrete wavelet transform (MODWT),
sometimes called the stationary or shift invariant
wavelet transform to analyze the variance.
     The MODWT provides several advantages over the
DWT.  It is able to decompose timeseries of arbitrary
length.  It is shift invariant, a circular shift of the original
timeseries results in a corresponding shift of the
MODWT scaling and wavelet coefficients, so the choice
of starting point in a timeseries doesn’t affect the
analysis.  The detail and approximation coefficients from
the MODWT analysis are associated with a zero-phase
filter making it possible to line up features in the original
timeseries with those at different scales.  The MODWT
can also be used to analyze the variance in a timeseries
as a function of timescale, but has been shown to be a
more efficient estimator than the DWT.   (Percival and
Mofjeld, 1997).
      The la8 wavelet is used to decompose the 50 year
timeseries into 6 intraseasonal timescales representing
variability on scales of 2, 4, 8, 16, 32 and 64 days.  The
timeseries of wavelet coefficients for each scale is then
circularly shifted by the proper number of days to line up
features in the coefficients with the same features in the
original timeseries.  The advantage of using the la8
wavelet is that it is is designed to be an approximately
zero phase filter and is a particularly efficient estimator
of the variance. (Percival and Mofjeld, 1997) The
variance is first calculated at each scale by pooling all of
the wavelet coefficients for the El Nino, La Nina and
neutral winters and then separately for each winter in
the dataset.
     The Fisher exact test is used to estimate the
significance of the difference of the variance between
the El Nino or La Nina winters and the neutral winter
average (Figure 3).



    Figure 3 shows regions with statistically significant
increases in the variance for scales 3 (8 days) and 5
(32 days) representing synoptic and monthly scale
variability.  Statistically significant increases are found at
13.6, 13.2,10.8, 11.4, 11.7 and 6.7 percent of the
gridpoints for scales of 2 days, 4 days, 8 days, 16 days,
32 days and 64 days respectively. The increases occur
in the same regions previously identified as possessing
a significant Granger causal relationship between the
seasonal total and SST anomalies as well as an
increase in the total variance.

5. Discussion
     By applying Granger causality analysis to test for
statistically significant causality between SST anomalies
and seasonal precipitation total, we identified a region
covering 17.5 percent of the land surface when we
regressed winter precipitation and SST anomalies with a
maximum lag of 2 seasons, fall and summer.
     Having identified a region in the southwest, southern
California, Florida and the Gulf Coast where the lagged
SST anomalies contain significant information about the
current state of the seasonal anomaly, we divided the
daily precipitation timeseries into El Nino, La Nina and
neutral winters based on the magnitude of the SST
anomaly.  We find that the mean and variance of
precipitation increase during El Nino winters across the
southern half of the country and decreases across the
northern half of the country with an opposite pattern
observed during La Nina winters.  The changes are
consistent with the results of previous studies that have
found an increase in blocking over the North Pacific
(Mullen 1989) decreasing the frequency of cyclones in
the northwest during El Nino winters.

     We applied the Fisher exact test to assess the
significance of the sign of seasonal precipitation
anomalies at each gridpoint in the gridded dataset.  The
exact test calculates the probability of drawing N winters
with an anomaly of a given sign out of a sample of 9
winters given that M out of 50 winters also had a change
of the same sign. Using this analysis, we find that 23.4
percent of the gridpoints experienced a statistically
significant increase in the mean and 13.8 percent
experienced an increase in the variance with a 95
percent level of confidence.    We find no spatially
coherent decreases in the mean or variance during La
Nina winters and no large-scale pattern of significant
changes of either sign during La Nina winters.  No
statistically significant changes in the mean or variance
were found for the 9 individual neutral winters used in
the analysis.
     The results of this study suggest that precipitation
characteristics over a small area of the United States
are affected by Nino-3.4 SST anomalies.  Hypothesis
testing suggests that given a large amount of year-to-
year variability, a large event-to-event variability in
ENSO and the small number of events on the record, a
small area, between 11 and 13 percent of the land
surface of the United States, experiences a robust
increase in the variance of daily precipitation during El
Nino winters.  A MODWT analysis of variance suggests
that the changes occur across timescales, suggesting
that ENSO increases the daily, synoptic, monthly and
subseasonal variance of daily precipitation.
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