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ABSTRACT 

  
This paper presents an optimum combination of two robust statistical techniques that can be used to improve the 
skill of long-range weather forecasts. The first method uses decomposition and analysis based on EEOF 
(Extended Empirical Orthogonal Functions), with a 3-month data window, for temperature and precipitation fields 
in Romania. Using Rule N to select the significant components led to 3 modes for temperature and to 9 modes 
for precipitation. In linear extrapolation, an AR model is used to produce forecast the time series of the EEOF 
components. The parameters of this model are determined by a method consistent with the maximum entropy 
method, which is why this model is named AR-MEM. In order to select model order, 7 criteria are tested, some of 
which are efficient, while the others are consistent. Model parameters are determined from observational data 
over the period 1950 – 1990. The Heidke skill score is computed using independent data (1991-1997). The best 
results have been obtained for the temperature field filtered by the first 3 EEOF modes, for the meteorological 
stations situated in the central part of Romania. For precipitation, the forecast based on the EEOF 1 component 
with one-step ahead, led to skill scores worse than those obtained using persistence in all cases.  
 
1. INTRODUCTION 
 
    While many different types of Empirical 
Orthogonal Functions (EOF) techniques are 
available (Kim and Wu 1999), Extended 
Empirical Orthogonal Functions (EEOF) as 
Weare and Nasstrom (1982) has been chosen 
for the present study, because it is best suited to 
forecasting. The conventional EOF identifies the 
main patterns of variability, which are coherent 
in space. In EEOF, those patterns coherent both 
in space and in time are identified (Wang et al. 
1995). In such analyses, the field is studied in m 
successive moments, that is a mobile window is 
inserted of length m. In a traditional EOF 
analysis, m = 1.   The way in which the window 
is selected depends on the aim of the analysis. 
Vautard and Ghil (1989) discussed the power of 
the EEOF method for identifying physical 
oscillations, as well as for analyzing, filtering and 
forecasting time series. One disadvantage of the 
EEOF analysis is that it is ineffective when the 
spatial coherence is small. Another 
disadvantage is a large computational memory 
requirement. Among the relatively recent 
applications of EEOF is Tangang et al. (1998), 
where they forecast ENSO events using an 
extrapolation of the first 7 EEOF components of 
the sea level pressure field, and the SSTA (Sea 
Surface Temperature Anomalies) with the help 
of a neural network model. 
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 Compagnucci et al. (2001) studied the  1000 
hPa geopotential height field using Principal 
Sequence Pattern Analysis (PSPA), which is an 
extension of Principal Components Analysis set 
in T-mode (Richman 1986). Since the purpose of 
their paper is to obtain spatial patterns and their 
time evolution, the PSPA methodology in T-
mode proved to be much more efficient than the 
EEOF analysis in S-mode.   
    In the present study extrapolation is 
performed linearly for each principal component 
(PC) series of the significant EEOF, by means of 
an autoregressive model (AR).      
The rest of this paper is organized as follows. 
Section 2 describes the data and methods. 
Section 3 presents the results of extrapolating 
the first 3 significant principal components series 
for temperatures, and the first principal 
component series of EEOF for precipitation, 
using an AR-MEM model. Summary and 
concluding remarks follow in Section 4. 
 
2. DATA AND METHOD 
 
   The meteorological time series (1950-1997) 
analyzed in this paper include mean monthly 
temperature values from 31 stations, and 
precipitation amounts from 33 stations in 
Romania, relatively uniformly distributed across 
the country. In the first stage decomposition and 
analysis based on EEOF with a 3-month data 
window, for temperature and precipitation fields 
in Romania are applied. After that, a linear 
prediction model is applied to the temperature 
and precipitation fields for a spatial 
encompassing Romania, for each component of 
EEOF and for separately for time series from 



each stations. The parameters of this model are 
determined by a method consistent with the 
maximum entropy method (Burg, 1975), which is 
why this model is named AR-MEM However, this 
technique differs from the one used by Barnett 
and Hasselmann (1979), because the 
orthogonal basis used to represent 
meteorological fields, is not in EOF, but in 
EEOF. Because climate variables are, in 
general, cyclostationary, the annual cycle has 
been eliminated from the data by normalizing, 
with respect to the average and variance of each 
month. The number of predictors is reduced as 
the number of significant components. The 
statistical significance of the retained 
components is based on Rule N (Preisendorfer, 
1988).  
In order to determine the grid point predictability 
for temperature and precipitation, (i.e. at 
stations), Mares and Mares (1997), utilize a 
single algorithm (FPE) for selecting the order of 
an AR-MEM model. In the present paper, new 
criteria, namely CAT (Parzen, 1977), AIC 
(Akaike, 1970), AICW (Wilks, 1995), BIC 
(Schwarz, 1978), HQ (Hannan and Quinn, 1979) 
and AICC (Hurvich and Tsai, 1989) are applied. 
The use of these criteria as well as filtering the 
initial field by the significant EEOF improves the 
forecast skill.  
The results on the criteria performance of the 
simulated time series are presented in Mares 
and Mares (2003). 
The model parameters have been determined 
from the 1950-1990 observation, and the 
verifications, by means of the Heidke score for 
persistence, have been achieved using 
independent data for the period 1991-1997. 
 
 
3.  EEOF EXTRAPOLATIONS  
 
3.1. Temperature field 
 
     The AR-MEM parameters, for the 1950-1990 
period have been determined for the first 3 
EEOF components. Tests have been performed 
for the 1991-1997 period (which contain a 
maximum of 82 values because of the extended 
EOF with a 3 month window). For the first PC of 
EEOF the following orders for AR-MEM have 
been obtained: 25 using FPE, CAT and AIC, 18 
using AICW, 9 using BIC, 28 using HQ and 17 
using AICC. In order to test the model orders on 
independent data, the correlation coefficients 
between forecast and observed values have 
been used. The root-mean-square-error (RMSE) 
was also considered in this test, because this is 
a measure sensitive to magnitude errors, while 
the correlation coefficient is immune to 

magnitude errors. Comparisons between 
patterns as well as magnitudes can be made 
with RMSE. The model orders and correlation 
coefficients (R) between forecast and 
observational series for first principal component 
EEOF are presented in the upper part of Table 
1. It is clear that all the criteria have almost the 
same performance, considering the values of the 
correlation coefficients and the RMSE.  BIC is an 
exception, it produces larger errors. When the 
observed and models series are standardized, 
the RMSE is always less than 1. 
     Oscillatory components can disturb forecasts 
based on an AR model, which is why, the 
existence of oscillatory components need to be 
determined. These oscillatory components are 
revealed using a periodogram (Vialar 1968) as 
well as a power spectrum built with AR-MEM 
models (Burg 1978; Ulrych and Bishop 1975).   
A period of 26 months was significant at the 95% 
level for the first PC of EEOF. In this case, the 
periodic series corresponding to 26 months was 
extracted from the initial series X1 of EEOF1. 
The same procedure is used for the residual 
series, X2. Once the model orders have been 
selected by the 7 criteria, then 82 values are 
extrapolated one step ahead and, finally, the 
performance of the 7 criteria are tested. The 
results are presented in the middle part of Table 
1, corresponding to the X2 series. The HQ 
criterion, with order 18, is sensitive to the nature 
of the series. Together with AICW and AICC, it 
produces the best results. These results for the 
residual series X2 are weaker than for the X1 
series, but the periodic part of the series has not 
been added yet. 
     The Heidke score has been chosen for this 
study in order to determine if the forecast values 
using an AR-MEM model are better than some 
other reference forecasts. The Heidke skill score 
(HSS) is calculated for the persistence forecast 
as well as for the forecasts based on an AR-
MEM model. The improvement of the forecast 
over persistence is given by the following ratio: 
(accuracy of forecast – accuracy of 
persistence) /(1- accuracy of persistence). 
When based upon  a 2 x 2 classical contingency 
table (Zhang and Casey 2000), with a, b, c and d 
the elements of the table (as defined in Wilks 
1995), the Heidke skill score is defined as: 2(ad-
bc)/[(a+c)(c+d)+(a+b)(b+d)]. A perfect forecast 
produces a HSS of 1, while a forecast that is no 
better than the reference produces a HSS of 0, 
and forecasts that are worse than the reference 
have negative HSS values. In this study, the 
values analyzed using the HSS have been 
classified in two categories: above and below 
normal, depending on the mean value of an 82 
element time series, which is used in the 
verification procedure. The periodic time series 



was then added to forecast series and, in this 
way, the X3 series is obtained. For the X3 series, 
correlation coefficients as well as HSS 
compared to persistence are presented in the 
lower part of Table 1. An improvement of the 
initial forecast is apparent and this improvement 
is due to the HQ, AICW and AICC criteria for 
optimum model orders equal to 18, 18 and to 17, 
respectively. The HSS based on a persistence 
reference is 0.390 for the first PC of EEOF. In 
Table 1, HSS represents skill scores in 
comparison with persistence.  
   Analyzing Table 1, it can be seen that all the 
criteria are more useful for the  first PC of EEOF 
 
 

temperature, forecast by an AR-MEM model, 
than forecasts based on persistence. The BIC 
criterion has the least skill. Based on the HSS, 
the AR-MEM model is much better than the 
forecast based on persistence. The FPE, CAT, 
AIC and AICW criteria indicated the same order 
of 26 for the second principal component of 
EEOF, and, same order of 23 for the third 
principal component The HQ criterion also had 
the same order (28) in both cases, and BIC and 
AICC had the same order (10) for EEOF2 and 
order 6 for EEOF3. These orders together with 
the correlation coefficients between predicted 
and observed series, and RMSE are presented 
in Table 2.  
 

TABLE 1. Order of the models selected on 7 criteria, correlation coefficient (R) between forecast and 
observed values and RMSE for the first PC of EEOF for three cases: predicted initial series X1, 
predicted residual series X2 and final series X3 obtained by the sum of X1 and periodic time series. The 
HSS in comparison with persistence is also indicated for X3. 
 
EEOF 1 FPE-CAT-AIC AICW BIC HQ AICC 
Series X1      
Model order 25 18 9 28 17 
R 0.868 0.866 0.849 0.868 0.867 
RMSE 2.877 2.900  3.077 2.881 2.840 
Series X2      
Model order 25 18 9 18 17 
R 0.852 0.857 0.819 0.857 0.856 
RMSE           2.894    2.842  3.192  2.842 2.853 
Series X3      
R 0.867 0.872 0.837 0.872 0.871 
HSS           0.442    0.362  0.280  0.362  0.362 
 
 
 
TABLE 2.  Performance of AR-MEM models depending on the selected order for temperature  
PC of EEOF 2 and 3. 
 
Component FPE-CAT-AIC-AICW BIC-AICc HQ 

Model order 26 10 28 
R 0.652 0.623 0.657 
RMSE 4.122 4.213 4.099 

E
E
O
F
2 

HSS 0.342 0.318 0.342 

Order 23 6 28 
R 0.816 0.789 0.814 
RMSE 2.827 3.009 2.841 

E
E
O
F 
3 

HSS 0.700 0.700 0.700 

 
 
 
 
 
 
 
 
 
 



 
 
For EEOF2, the best criterion is HQ, based on 
the correlation coefficient and the associated 
RMSE. For the PC of EEOF3, the best results 
correspond to FPE, CAT, AIC and AICW criteria, 
while the weakest to the BIC criterion. Note that 
the correlation coefficients are higher for EEOF3 
than for EEOF2, which are also shown by the 
associated RMSE values. The HSS for 
persistence (which is the reference forecast) is 
negative in both time series corresponding to 
EEOF2 and EEOF3 and has the following 
values: -0.074 and –0.467, respectively. In 
comparison, the performance of AR-MEM model 
is very good for EEOF3, with an HSS equal to 
0.7 for all the orders indicated by the 7 criteria. 
The skill in this case was higher than for the first 
PC of EEOF where persistence exists and for 
which an AR-MEM model is not as useful. The 
PC of EEOF2 has a HSS equal to 0.342 for the 
forecasts based on an AR-MEM model for the 
criteria similar to FPE and for HQ. An HSS is 
equal to 0.318 resulted for the forecasts 
performed using the order indicated by BIC and 
AICC.  
     The temperature at a station should be 
predicted with skill using an AR-MEM model and 
a filtering procedure. In this case, a new time 
series is constructed, by means of the first three 
PCs together with the first three EEOF 
eigenvectors. Then the efficiency of the station 
forecast was tested using the observed field. For 
this purpose, correlation coefficients between 
forecast and observed series, as well as, RMSE 
associated are used. The FPE, CAT and AIC 
criteria give same values for the reconstructed 
series, while the other four criteria yield different 
orders. For lags 0 and 1 the results are good, 
the correlation coefficients have a high level of 
significance corresponding to the 82 values, and 
the RMSE values are small. For lag 2, the 
performance of the model decreases rapidly, 
due to the small length of the window, as 
expected from von Storch and Frankignoul 

(1998). They showed that when the lead-time 
becomes longer than the window length, a 
sudden drop in skill occurs. For this reason, only 
the results for lag 0 and 1 will be discussed.     
For lag 0, the highest correlation coefficient is 
given by the HQ criterion for 18 of the 31 
stations, and by FPE-CAT and AIC criteria is 
best for the rest of the stations. The highest 
correlation coefficient (0.954), with RMSE 
equal to 0.330, was obtained for lag 1 at the 
Sibiu meteorological station, in the central 
part of Romania. For Sibiu station, the 
behavior of the predicted time series (filtered by 
the three EEOF modes) with one step ahead 
compared to the observed series is shown in 
Fig. 1. For lag 1 at Sibiu the HQ criterion 
produces, a high HSS = 0.762 compared to 
persistence, which has HSS = - 0.024. 
Correlation coefficients, together with RMSE 
values, obtained using the HQ criterion for all 
Romanian stations, are presented in Figs. 2 and 
3. From these figures, it is clear that the model 
performs worst in the mountain areas.  The best 
skill, highest correlation coefficient and lowest 
RMSE, appears in the Southwestern sub-
Carpathian area. Several other stations in and 
around the Carpathian ring also have good skill.   
The high variability in temperature over the 
Romanian territory, due to the mountains, 
represents a problem element for the methods 
used in the present study.  
Figs 4 and 5 present the correlation coefficients 
and RMSE values, after having eliminated the 
stations with the largest variability (Vf. Omu, 
Fagaras, and Miercurea Ciuc). Figs. 11 and 12 
show the capability of the model to improve the 
monthly temperature forecast in the central parts 
of the analyzed domain, compared to the 
boundary zones. The model performs worse in 
the mountain and in valley stations, where can 
be a large variability in the analyzed fields.  

 
 
 
 
 
 
 
 
 
 
 
 
 



 

Fig. 1.  Forecast and observed temperature at the Sibiu station (situated in centre of  Romania) for  
           1991-1997. 
 
 
 

 
 
FIG. 2.  Spatial distribution of correlation 
coefficients between the forecast temperature 
field filtered by the first three EEOF and 
observations. 
 

 
 
FIG. 3.  RMSE associated to the correlation 
coefficients in FIG.  2. 
 
 
 
 
 
 
 

 
 
FIG. 4.  As  FIG. 2, but without the stations: Vf. 
Omu, Fagaras and Miercurea Ciuc, that have a 
high variability. 
 

 
FIG. 5. As FIG. 3, but without the stations: Vf. 
Omu, Fagaras and Miercurea Ciuc that have a 
high variability. 
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3.2. Precipitation field 
 
     For the precipitation field, 9 EEOF modes are 
significant using Rule N. This means 9 
components should be used for extrapolation. 
The same procedures used for temperature are 
followed for precipitation. Ideally, a detailed 
analysis should be performed for each retained 
component and this might be the aim of a 
separate study. Hence, only the first EEOF 
component will be considered here. Although 
this component explains only 19% of the total 
variance, it yields a good image of the 
precipitation pattern over Romania, especially if 
the amounts are interpreted as deviations from 
climatology.  
     Following the same procedure as for 
temperature, the coefficients and model orders 
of the AR-MEM model are selected by the 7 
candidate criteria, for 1950-1990 period while 
verification tests have been made for 1991-1997 
period.  
     Although the first component has 8 and 23-
month periodicities with 95% significance, after 
extracting the periodic part of the series, 
extrapolating it, and then adding the periodic  
 
 
 

 
 
part back again, no model skill improvements 
are noted. 
The results for the PC of EEOF1 for 
precipitation, in accordance with the 7 criteria, 
are presented in Table 3. The FPE, CAT, AIC 
and AICC all suggest the same order (23), while 
BIC and AICC suggest order 12, and HQ order 
27. The HQ criterion gives the best result, but is 
worse then persistence. The Heidke score for 
persistence is 0.625, and for all of the criteria the 
Heidke score is lower. HSS for the forecast is 
even weaker than the reference one based on 
persistence. Persistence had large values 
because the last two decades have been 
unusually dry in Romania. If the extrapolated 
forecasts are split into two categories (above 
and below normal compared to climatology) 
results are no better because these 
meteorological elements do not have a 
Gaussian distribution. A quantiles classification 
may be more appropriate.  
If precipitation displays a strong persistence, 
modeling with a high order Markov chain may be 
appropriate using the ergodicity coefficients of 
the transition matrix (Iosifescu 1980).  
 
 

 
TABLE 3. Performance of AR-MEM models depending on the selected order  
for the first PC of EEOF 1 for the precipitation field. 
Component                   FPE-CAT-AIC-AICW           BIC-AICC             HQ 
EEOF 1    
Model order 23 12 12 
R             0.834            0.812 0.835 
RMSE             2.158            2.292 2.157 
 
 
4. Summary and concluding remarks 
 
     The combined statistical technique of 
decomposing certain meteorological fields into 
extended empirical orthogonal functions and, 
followed by temporal extrapolation, using an AR-
MEM model yielded useful results for surface 
temperature fields in Romania. In this way, 
periodicities are extracted and extrapolated 
forecasts display some skill. 
     In order to examine the periodicity, both a 
power spectrum based on MEM, and the 
periodograms, with appropriate statistical 
significance, are used. Several spectral peaks 
are evident in temperature field as well as 
precipitation. For temperature, most significant 
peak has a period of 26 months. For 
precipitation, there are two significant peaks: 8 
months and 23 months.  
   

 
 
   The 26 and 23 month-periodicities might be 
associated with the Quasi-Biennial Oscillations  
(QBO) in this part of the European continent. 
Similar periodicities of 2.1 and 2.4 years in the 
precipitation field have been observed by 
Tabony (1979) for the Western and Northern 
part of Europe. The QBO is also observed in 
other meteorological fields such as sea level 
pressure (Trenberth and Shin 1984). In addition, 
there is clear evidence for a coherent QBO 
signal in time series of surface temperatures in 
some zones of the Northern Hemisphere, but no 
persuasive statistical connection exists between 
the QBO in the equatorial stratosphere and the 
QBO in the low troposphere. Both stratospheric 
and tropospheric QBOs, and their possible 
connections, are explained in the other literature 



(Lindzen and Holton 1968; Niwano and 
Takahashi 1998).  
      In this study, the 26-month period was 
extracted from the time series of the EEOF1 
component for temperature, (as per Kim and 
North 1998) which improves the HSS for 
EEOF1. The HSS was best (0.7) for the EEOF3 
component in all-7 cases of tested criteria.  
     Extrapolating each of the three significant 
principal components for the temperature field 
and using them to reconstruct the initial field, 
filtered by the significant modes, led to a 
forecast with good skill compared to persistence 
for meteorological stations situated in the central 
part of Romania (HSS = 0.756).  
     For precipitation field, although the first EEOF 
component describes the mean precipitation 
over Romania well, application of an AR-MEM 
did not lead to a better forecast than 
persistence.  
     Regarding the efficiency of all the 7 criteria 
analyzed in this study in order to select the order 
of an AR-MEM model, the tests led to different 
results, depending on whether they were applied 
to simulated or observed time series.  For data 
simulated with a 2 or 4 order AR model, criteria 
such as BIC determined the model order with 
great accuracy, but worked poorly for observed 
data.  The FPE, CAT, AIC and AICW criteria 
indicated for observed data, in most of the 
cases, the same order, while BIC, HQ and AICC 
estimated different orders. Concerning their 
forecast skills, BIC had the lowest one and the 
skills of the other criteria changed depending on 
the analyzed time series. The, HQ had the 
highest skill for the series reconstructed of the 
first 3 EEOF modes for lag 0 and, for some 
stations, also for lag 1. 
    The main difference between the behavior of 
the criteria for simulated and observed data may 
be due to the fact that simulations have been 
performed only on 2nd and 4th order AR-models 
and not on time series fitted with AR models of 
higher orders. It appears that the efficiency of 
the various criteria depends a lot on the nature 
of the data. Kashyap (1980) showed that the 
criteria for accepting an AR model are different 
from one application to another. For valid 
results, the simulations must properly represent 
the nature of the phenomena being considered. 
It appears that no single rule can be generally 
applied for determining the appropriate model 
order.  
      There was no skill for forecasts on lag 2 that 
extrapolate forward one step. This means that it 
is necessary to increase the length of the data 
window (compared to 3 months used in the 
present paper) to take advantage of the EEOF 
method for obtaining forecast estimations for 
some months ahead. It is important to 

emphasize that the analysis of EEOF 
components, as well as their extrapolations, led 
to very good results for the central part of the 
analyzed domain when compared to the border 
area, where the results are weaker. 
     For the temperature field in Romania, this 
method can be applied to the long-range 
weather forecasts. Unfortunately, results for 
precipitation are poor. The poor results for 
precipitation seem to be linked to the fact that 
precipitation is not normally distributed. In the 
future, we shall use a procedure of probability 
transformation in order to bring the precipitation 
distribution close to a Gaussian one. 
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