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1. Introduction

"Since its first introduction by Evensen (1994), the
ensemble Kalman filter (EnKF) technique for data
assimilation has received much attention. A number
of studies have been done to exploit its applications
and performances. The EnKF was designed to sim-
plify the computation of the flow-dependent error sta-
tistics without the use of approximate closure scheme
as extended Kalman filter does. Rather than solving
the equation for the time evolution of the probability
density function of the model state, EnKF applies the
Monte Carlo method to estimate the forecast error
statistics. A large ensemble of model states are inte-
grated forward in time using the dynamic equations,
the moments of the probability density function are
then calculated from this ensemble of model states for
different times (Evensen 2003).

In the recent decades, various techniques have
been developed for analyzing and retrieving atmos-
pheric state at the convective scale from Doppler ra-
dar data. These methods range from purely kinematic
to expensive 4D variational method that employs a
nonhydrostatic prediction model and its adjoint (e.g.,
Gal-Chen 1978; Sun et al. 1991; Qiu and Xu 1992;
Shapiro et al. 1995; Sun and Crook 1997; Gao et al.
1999; Wu et al. 2000; Weygandt et al. 2002). Most of
the latter work deals with retrieval and assimilation of
radial velocity and/or reflectivity data from single Dop-
pler radar. For the purpose of initializing NWP models,
the 4DVAR method (e.g., Sun and Crook 1997; Gao
et al. 1998) promises to provide an initial condition
that is consistent with the prediction model and is able
to effectively use multiple volume scans from radar.
However, due to the need for an adjoint that should
include detailed physics parameterizations and the
high computational cost, 4DVAR assimilations of
Doppler radar data have been limited to using rela-
tively simple model configurations.

Compared to the 4DVAR method, the EnKF
scheme is more flexible and much easier to set up.
Under the right assumptions, its solution is equivalent
to the optimal 4DVAR analysis. In fact, EnKF has
recently been applied to the assimilation of simulated
Doppler radar data for a convective storm (Snyder
and Zhang 2003; Zhang et al. 2003) and of real radar
data by Dowell et al. (2003). All three studies used the
same anelastic cloud model of Sun and Crook (1997).
Simple warm-rain microphysics scheme is used in
these as well as afore-quoted 4DVAR studies with Wu
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et al (2000) being one exception. In the latter, the ice mi-
crophysics scheme used was simplified and microphysical
variables, among others, were analyzed from dual-
polarization radar data. In the study, water and ice phase
microphysical variables are first derived from the polariza-
tion reflectivity data before being assimilated into the
model.

In this study, we report on the development of an
EnKF system based on a general-purpose compressible
nonhydrostatic model, and the application of the system to
the assimilation of simulated single Doppler radar radial
velocity and/or reflectivity data. A sophisticated ice micro-
physics scheme is employed. The performance of the
EnKF scheme in 'recovering' complete model structures,
including wind, temperature, pressure fields and all water
and ice categories are examined. The impact of radial
velocity and reflectivity data as well as their spatial cover-
age on the analysis are investigated. Section 2 describes
the EnKF assimilation system and design of OSS (Observ-
ing System Simulation) experiments, and section 3 pre-
sent and discussed the experiment results. A concluding
section is given at the end.

2. Assimilation System and Experimental Design
a) The prediction model and truth simulation

In this study, we test our EnKF assimilation system
using simulated data from a classic May 20, 1977 Del City,
Oklahoma supercell storm case (Ray et al. 1981). Such
simulation experiments are commonly referred to as Ob-
serving System Simulation Experiments (OSSE, see, e.g.,
Lord et al. 1997). The forecast model used is the Ad-
vanced Regional Prediction System (ARPS; Xue et al.
2000), In this study, the ARPS is used in a 3D cloud model
mode and the prognostic variables include three velocity
components U,V,w, potential temperature @, pressure p,
and six categories of water substances (water vapor spe-
cific humidity qy, cloud water mixing ratio qc, rainwater mix-
ing ratio g, cloud ice mixing ratio g;, Show mixing ratio gs
and hail mixing ratio gn). The microphysical processes are
parameterized using the modified three-category ice
scheme of Lin et al. (1983) and its implementation follows
Tao and Simpson (1993).

For all experiments unless otherwise noted, the physi-
cal domain is 64kmx 64kmx16km . The model grid com-
prises of 35x35x35grid points, with grid intervals of 2 km
in both x and y directions and of 0.5 km in the vertical. The
truth simulation or nature run was initialized from a modi-
fied real sounding plus a 4K ellipsoidal thermal bubble
centered at X =48km, y =16km and z =1.5km, and with

radius of 10km in xand y and 1.5km in vertical direc-
tions. Open boundary conditions are used at the lateral



boundaries. A radiation condition is also used at the
top boundary. Free-slip conditions are applied to the
bottom boundary. The length of simulation is 75 min-
utes. A constant wind of u=3 ms® and v=14 ms*
is subtracted from the original sounding to keep the
primary storm cell near the center of model grid. De-
spite a relatively coarse resolution, the evolution of
the simulated storms is very similar to those docu-
mented in Xue et al. (2001).

b) Simulation of radar observations

The simulated observations are assumed to be
available on the grid points. The radial velocity is cal-
culated from

V., =ucosasin f+vcosa cos f+wsing (1)
where « is the elevation angle and £ the azimuth

angle of radar beams, and u, v and w are velocities
from the simulation.

The logarithmic reflectivity is estimated from
equations as follows:

dBZ =10log(Z), 2

Z=72+Z,+2,, (3)

where Z;, Zs, Zn are contributions from rain, snow and
hail. The rain component of the reflectivity is calcu-
lated from
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where C is a constant, p, =1000kg / m®is the density
of rainwater, p is the density of air. If the temperature

is less than zero centigrade then the snow component
of reflectivity is
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where p, =100kg/m?® is the density of snow and

p, =917kg /m®is the density of ice. The hail compo-
nent is calculated from

720C
Zh = 44075 _175
(4.0x10°)" "7z " p,

where p, =913kg/m®is the density of hail.

The radar is located at the southwest corner of
the computational domain. For the data sampling and
data assimilation, we assume the observation opera-
tor to be perfect. As with most 4DVAR and EnKF
studies, the prediction model is also assumed perfect,
i.e., no model error is explicitly taken into account.
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c) The EnKF data assimilation procedure

Our EnKF implementation is based on the algorithm
described by Evensen (1994), Burgers et al. (1998) and
Houtekamer et al. (1998). The analysis equation is

X' =x'+P"HT[HP'H" +R]™(y, - Hx') , (8)
where i represents the i" ensemble member and x; is the

first guess obtained from the i™ ensemble forecast. P is
the forecast error covariance and R is the observation
error covariance. Perturbed sets of observations are used

to update each ensemble member and y; is the i per-

turbed observation. H is the observation operator, which
converts the model states to the observation parameters.
The forecast error covariances are calculated from

13 i e
PHT = ——237(¢ —x")(Hx' —HX')" ©)
N-14
and
19 — g
HP'H' = ——3 (Hx — Hx')(Hx —Hx')", (10)
N-1%

where the overbar denotes the ensemble mean and N is
the number of ensemble members.

We start the initial ensemble forecast at the 20 min-
utes of the model simulated storm. To initialize the en-
semble members, Gaussian noises with zero mean are
added to the horizontally homogeneous initial guess that is
based on the environmental sounding. The standard de-
viation of the random noises is 3 ms™ foru , Vand w and
3K for potential temperature. The pressure and moisture
fields are not perturbed. The first analysis is performed at
25 minutes. One hundred ensemble members are used for
the assimilation experiments.

The observations are assimilated every 5 minutes.
The observation errors are assumed to be uncorrelated;
therefore, observations can be and are analyzed sequen-
tially one at a time. We limit the influence region of each
observation to a rectangular region with half width of 2 grid
intervals in both horizontal and vertical directions, a pro-
cedure known as covariance localization. Observations
are perturbed by adding Gaussian noises, with the stan-
dard deviations being 1 ms™ for radial velocity and 5 dBZ
for reflectivity.

Table 1 gives a list of ten experiments reported in this
paper. First the assimilation scheme is tested by only as-
similating the simulated radial velocity data with full data
coverage or data covering regions with significant reflectiv-
ity only. The impact of using reflectivity data is evaluated
among other experiments.

3. The Assimilation Experiments
a) Assimilations using radial velocity data only

In experiment VrFull we assume that the radial veloc-
ity data cover the entire computational domain. In experi-
ment VrCloudy the same data are available only in cloudy
regions where reflectivity is greater than 10dBZ. Although
in real cases, the radial velocity data are generally un-
available or are unreliable outside the cloudy regions, we
would like to see how data coverage impacts the quality of
EnKF assimilation.
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Table 1. List of Data Assimilation Experiments
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Figure 1. Vertical velocity (m s™; shaded), horizontal wind vectors (m s™), and perturbation poten-

tial temperature @' (K; contour) at z

and VrCloudy (i)~() at T
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Figure 2. The vertical cross-sections of wind vectors (m s‘l), perturbation potential temperature
(K; shaded), which pass through the maximum updraft, for the truth simulation (a)~(d), experi-
ment VrFull (e)~(h) and experiment VrCloudy (i)~(I) at T=40, 60, 80 and 100 min.

As one can see by comparing with the truth fields,
the wind, temperature, and microphysical variable
fields can be accurately retrieved by experiment
VrFull (Figs. 1, 2, 10). At 80 minutes (the end of 12"
assimilation cycle), the maximum updraft is 40.5 ms™,
which is very close to the 40.7 ms™ of truth simulation
(Fig. 2 though the specific maximum values are not
shown). The strength of the low level cold pool, repre-
sented by the minimum perturbation potential tem-
perature at the first scalar level (250m) above ground,
is -5.42 K for the simulation and -5.0 K for experiment
VrFull (not shown). The overall structure and evolu-
tion of the assimilated storm is very close to the true
storm at this stage, indicating that the assimilation of
radial velocity data using the EnKF scheme is suc-
cessful.

Compared to VrFull, VrCloudy is also able to es-
tablish the basic structures of the model storm well.
The evolution of the model storm, including the cell
splitting between 40 and 60 minutes and further split-
ting after 80 minutes are all well reproduced (Fig. 1).
However, the strength of the updraft, the edge and
strength of the low level cold pool (not shown) and
also the distribution of the six water substances are
not as accurate as in VrFull (Figs. 1, 2 and 10). Since
we added perturbations to the initial guess every-

where and covariance localization was made, the envi-
ronmental state in the clear air regions can not be updated
by the analysis directly when data are limited to the cloudy
regions. The model fields are therefore somewhat noisy.
In real cases, other data representative of the environment
can be used to improve the environmental analysis.

We use the rms error of the mean of ensemble analy-
ses and forecasts to judge the quality of the mean analysis.
The rms errors are averaged over those grid points where
the reflectivity is greater than 10 dBZ. The errors for VrFull
and VrCloudy are plotted in Fig. 3. The rms errors of ve-
locities, temperature and hydrometeor variables are seen
to decrease rapidly in the first four assimilation cycles
(over 20 minutes). The rms errors are much smaller when
the data covers the entire domain.

The EnKF data assimilation scheme works well for all,
except pressure fields. Figure 3(e) shows that for the case
when pressure field is analyzed (updated by the analysis),
the pressure field becomes less accurate than the back-
ground forecast after each analysis. In fact, in this case
and for almost all cycles, it is the model forecast that re-
duces the error in pressure. When data coverage is limited
to the cloudy regions, the situation becomes even worse
(the red curve in Fig. 3 (e)). The model pressure field (not
shown here) indicates excessive acoustic oscillations in
the analysis and forecast solutions, especially at
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Figure 3. The rms errors of the mean of ensemble forecasts and analyses, averaged over points at
which the reflectivity is greater than 10dBZ for: a) u (ms'l), b) v (ms'l), c)w (ms'l) and d) perturbation
potential temperature 8' (K), e) perturbation pressure p'(Pa), ) qc (g kg’l) 9)ar(g kg'l), h) qv (g kg'l;
thick curve), qi (g kg'l), i) gs (g kg'l), i) an(g kg'l), for experiment VrCloudy (red), experiment VrFull
(black) and experiment VrFLD (only the rms error of p' is shown, which is the blue curve in (e)).

the lower levels. The problem results from the com-
pressible nature of the forecast model. Because the
background error correlations associated with the
acoustic modes cannot be reliably estimated (mainly
because of its high frequency), it is hard for the analy-
sis to exactly satisfy the mass continuity equation.

When the continuity equation is not satisfied,
acoustic modes get excited. The problem is more
severe during the earlier assimilation cycles and/or
when data coverage is incomplete. The acoustic wave
amplitudes actually decreases in the subsequent
model forecast, due to dynamic adjustment and built-
in damping of acoustic modes in the model. When the
data coverage is complete, it takes only a few cycles
for the pressure field to adjust and become close to
the truth, except in the lower layer. The situation is
worse when data coverage is incomplete because in
the clear air regions, the model variables are not up-
dated by the analysis and large imbalances occur at
the edge of cloudy regions, large amplitude acoustic
waves are excited there. As a result, the forecast er-
ror covariance computed from the ensemble states
becomes incorrect and the analysis update does not
improve the background forecast of pressure. In the
cloud-scale EnKF assimilation studies that use an
anelastic model, pressure is diagnosed from the wind
field. When wind field does not satisfy the anelastic
mass continuity equation, similar problem may occur
although this issue has not been discussed in the
literature.

The open lateral boundary condition used in our simu-
lations is another possible source of mass continuity error.
To examine the boundary effect, another experiment
VrFLD is performed that is the same as VrFull, except the
domain 2.5 times as long in the y direction. As the lateral
boundaries are further removed from the storms, the pres-
sure analysis and forecast errors are significantly reduced
(as shown by the blue curve in Fig 3 b).

Since the analysis update to pressure generally hurts
the model solution, the update to pressure should not be
performed. This is so in our later experiments, and in gen-
eral, the model is able to establish a pressure field that is
consistent with the wind and other fields.

b) Impact of assimilating reflectivity data

Reflectivity is a measurement that is provided by all
types of weather radar. In this section, we examine if re-
flectivity data alone is sufficient for the model to reproduce
the true storm, and we also study its value when used in
combination with radial velocity data (which is unavailable
from non-Doppler radars). We note that the observation
operator for reflectivity is nonlinear and there exist more
uncertainties in the operator with reflectivity data than with
radial velocity. In our model with ice microphysics, the
rainwater, snow and hail mixing ratios, q;, gs, and g, are
directly related to the reflectivity (Egs. 3-6). The experi-
ments therefore further test the performance of EnKF
scheme in the case of nonlinear observation operator. In
the first experiment ZCloudy, only simulated reflectivity
greater than 10dBZ is assimilated.
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Figure 4. The rms errors of the mean of ensemble forecasts and analyses, averaged over points at which

the reflectivity is greater than 10dBZ for: a) u (ms'l)
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(g kg™, i) gs (g kg™, ) gn (g kg™),for experiments ZCloudy (red) and VrCnop (black).
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Figure 5. As Fig. 4 for experiments VrCnop (black) and VrZCa (red).

As can be seen in Fig. 4 (red curves), the analysis
starts to reduce the rms errors for g, and g first (start-
ing from the second cycle) and then for w, 8", qc, Qv, Qs
and g;. Significant reduction in u and v errors did not
start until after six to seven cycles. We compare this
experiment with VrCnop, which is the same as
VrCloudy, except that the pressure field is not updated.
The accuracy of the retrieved snow and hail fields is

better while the accuracy of retrieved rain and ice fields
is comparable. For water vapor field, the rms error is
smaller than that of VrCnop in the later part of the analy-
sis period. But the velocity and temperature fields are
not as good as those of VrCnop. The result is reason-
able, because the relation between reflectivity and the
wind and temperature fields is indirect. The information
of reflectivity can be used to effectively correct errors in
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Figure 6. As Fig. 4 but for experiments VrZCa (red) and VrZCb (black).

the wind and temperature fields only after the EnKF
system produces correct forecast error covariances
between the variables.

In the next set of experiments, we combine the
radial velocity and the reflectivity data into the assimi-
lation process. In experiment VrZCa, both the radial
velocity and reflectivity in cloudy regions are assimi-
lated (red curve in Fig. 5). Compared to VrCnop, we
can see that when additional reflectivity data are as-
similated the analysis errors of gs, gn, Qr and @; are
smaller than those in VrCnop. Whereas for most of
the other control variables, in the first part of assimila-
tion period (before 65 min), including reflectivity data
hurts the model solution. In the later part of the period,
the analysis update of all variables, except pressure,
is better or is as good as in VrCnop. Our explanation
is that at the early stage of the assimilation period,
background error covariances between reflectivity and
the fields not directly related to reflectivity were not
reliable. Updating these variables based on reflectivity
data and the unreliable covariances therefore hurts
the analysis. As the model state gets closer to truth,
the covariances estimated are improved, leading to
direct positive impact on other fields.

We note that in Dowell et al. (2003) that uses
warm rain microphysics, only q; is updated when as-
similating reflectivity observations. We performed a
corresponding experiment, VrZCb, in which only q;, gs,
and g, were updated when assimilating reflectivity
(black curve in Fig. 6). With respect to the wind and
temperature fields, this does lead to better results
before the sixth cycle. However, after the sixth cycle,
the accuracy of the wind and temperature fields is not
as good as the case that we do update all variables
(except for pressure). As discussed earlier, in the

EnKF system, there is clearly a delay before reliable co-
variances between reflectivity and the wind and thermody-
namic fields are established. After the initial delay, the
reflectivity becomes directly beneficial in retrieving the
wind and thermodynamic fields and the assimilation of it
leads to overall better analysis. For this reason, we do not
believe it appropriate to exclude wind and temperature
from the analysis update based on reflectivity data.

To see if we can further improve the analysis, in
VrZCc we apply the update due to reflectivity to g, gs, and
gn only before the fourth cycle. After the fourth cycle, all
control variables (except for pressure) are updated based
on reflectivity. Figure 7 shows that by doing so, the analy-
ses for all control variables are improved and so is the
forecast of pressure field.

In the previous experiments, only reflectivity larger
than 10 dBZ is assimilated. In reality, zero reflectivity out-
side the cloudy regions also contains valid information.
One can assume that the assimilate reflectivity data cover
the entire analysis domain. In our next OSS experiment,
named VrCZfull, such assumption is made, but radial ve-
locity data are still only available in cloudy regions (Z > 10
dBZ). As was done in experiment VrZCc, the velocities (u,
Vv, W), perturbation potential temperature 8", qv, qc, and q;
are updated starting from the fourth cycle when assimilat-
ing reflectivity. Figure 8 shows that with the complete re-
flectivity coverage, not only the microphysical fields are
much improved, but also the wind and temperature fields.
The complete coverage of reflectivity data can remove
spurious disturbance that can otherwise develop in the
data void regions. Experiment VrCZfull produces the best
result among those that does not assume complete cover-
age of V, data.
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Figure 8. As Fig. 4 but for experiments VrZCc (red) and VrCZfull (black).
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Figure 9. As Fig. 4 but for experiments VrCnop (black) and VrCnoice (red).

c) Retrieval of microphysical fields

The microphysics retrieval is an important aspect
of convective-scale data assimilation. Relatively few
previous studies have focused on this problem. Most
of these studies used only simple microphysical
parameterization and the ice phase is usually ex-
cluded. The recent attempt of Wu et al (2000) uses a
4DVAR data assimilation system to assimilate dual-
polarization radar data into a model of deep convec-
tive cloud with both liquid and ice phase microphysics.
In their study, the microphysics scheme is simplified
and consists of only three categories: rain, hail and
cloud liquid-ice. The reflectivity and differential reflec-
tivity data were converted to rain and hail mixing ratios
first, rather than being directly assimilated. The differ-
ential reflectivity data were necessary for such a con-
version. In our study, the original detailed ice micro-
physics parameterization is used and only regular
reflectivity measurement is assumed available. Our
problem is more difficult here because more water and
ice species have to be determined and no dual polari-
zation information is available. Figure 10 shows the
distribution of the five categories of hydrometeor for
the true run and for assimilation experiments VrFull,
VrCnop, VrCnoice, ZCloudy and VrCZfull. The figure
shows that the EnKF data assimilation system is able
to establish detailed microphysical structures that
have very good fidelity. The quality of actual analysis
does depend on the usage and availability of data, as
seen earlier by the error plots.

To better understand the way the EnKF scheme works
when retrieving the microphysical fields, we performed
another experiment, named VrCnoice, in which g, gs, and
gn (as well as pressure) are not updated by the analysis
and only radial velocity in cloudy regions are assimilated.
For these three variables, the difference between VrCnoice
and VrCnop is relatively small before the 6" cycle, but be-
comes significant after that time (Fig. 9). For the early pe-
riod, the relatively small difference reflects relatively weak
or unreliable link (through background error covariance)
between the observation (V;) and these three variables.
The link apparently becomes stronger and more effective
in correcting errors in these fields at the later stage. On the
other hand, despite of the lack of direct correction to q;, s,
and gn by V,, the errors in the former are still reduced in
time in general. Such reductions are achieved through
model dynamics — when other model fields are improved,
fields that are not directly updated have to adjust and be-
come consistent with these other fields. The more accurate
hydrometeor fields, in turn, help improve the overall model
state. The link through model dynamics is more important
at the early period of assimilation when background error
covariances are less reliable.

Despite the effectiveness of radial velocity assimilation,
the reflectivity is most important for retrieving the micro-
physical fields because it has the most direct link to the
hydrometeors. Experiment ZCloudy helps us understand
this point. With only reflectivity, we cannot obtain as good
an analysis for wind and thermodynamic fields, but the
microphysical fields can be retrieved accurately (Fig. 4 and
Fig. 10).
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Figure 10. The cross-sections of qc, qr, 0i, gs and gn (g kg'l) fields that pass through the maximum up-
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VrCnoice (4-a)~(4-e), ZCloudy (5-a)~(5-e) and VrCZfull (6-a)~(6-e) at T=65 min.

4. Concluding and Discussion

In this study we applied the ensemble Kalman fil-
ter technique to the assimilation of simulated radar
radial velocity and reflectivity data using a com-

pressible model with a complex microphysics scheme.

The method is shown to have great potentials for the
assimilation of such data. Through flow-dependent
forecast error covariance estimation from the ensem-
ble states, not only the wind and thermodynamic

fields can be retrieved accurately, all five categories of
hydrometeor can also be retrieved successfully. Reliable
covariances between the observations and variables not
directly related to them can be obtained after a few assimi-
lation cycles even when they are started from initial guess
made of an environmental sounding plus random pertur-
bations. After the initial number of cycles, useful observa-
tional information can be spread to the indirectly related
variables through reliable forecast error covariances. Up-
dating indirectly related variables after the first few cycles
when assimilating reflectivity data produces the best
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analysis. Using reflectivity information in clear air re-
gions is also beneficial. When using a compressible
model, acoustic wave mode can be excited by errors
in the wind and pressure analyses and it is recom-
mended that pressure be excluded from the analysis
update. This choice is shown to work the best.

Of course, caution should be applied when inter-
preting OSSE results. Both forecast model and for-
ward observation operators are assumed perfect,
which happens to work well for OSSE data. Despite a
recent success in applying EnKF to real radar data
(which still used a model in idealized settings), much
work is still needed in moving us in the direction of
real case and real data.
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