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1. Introduction 
 

*It is very important to accurately characterize the 
three-dimensional distribution of water vapor in the 
atmosphere for the understanding and prediction of 
mesoscale and storm-scale weather, especially with 
regard to quantitative precipitation forecasting 
(Emanuel et al. 1995). Skills in these predictions 
have been improved rather slowly owing to the high 
spatial and temporal variability of water vapor. Thus, 
high resolution observations of three-dimensional 
water vapor should have capability to improve the 
prediction of precipitation and severe weather.  

In recent years, spaced- and ground-based Global 
Positioning Systems (GPS) have been developed and 
become an important instrument that can potentially 
provide water vapor measurements with high resolu-
tion under virtually all weather conditions. Integrated 
water vapor can be derived from wet signal delay 
along each slant path between a GPS satellite in view 
and a ground-based receiver. This water vapor is 
called slant water vapor with an accuracy of a few 
millimeters (Braun et al. 2001). Most importantly, 
slant water vapor can provide vertical structure in-
formation of atmospheric moisture. 

In the recent years, encouraged by the potential 
of GPS water vapor sensing, researchers have begun 
the studies on the impact of GPS water vapor obser-
vations on short-range forecasting of convective 
weather. Kuo et al (1996), Guo et al (2000) and Ha et 
al (2002), using a 4DVAR system, identified positive 
impact of assimilating GPS water vapor data into 
mesoscale models on prediction. MacDonald et al 
(2002) demonstrated through Observing System 
Simulation Experiments (OSSE) and 3DVAR (three 
dimensional variational) analysis  that a high-
resolution network of GPS receivers can recover the 
moisture field from the slant integrated water vapor. 
In their analysis, the integrated slant water vapor 
measurements are combined with the surface mois-
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ture observations assumed to be available at each ground 
station and with a low density network of water vapor 
soundings. In their 3DVAR analysis , however, no back-
ground moisture field was involved. In order to avoid in 
the 3DVAR analysis the under-determined problem as-
sociated with the number of control variables exceeding 
the number of observations, approximately 100 GPS 
observations per surface receiving station were used. 
This assumes about 100 satellites in view at any particu-
lar time, an unrealistic assumption currently and for the 
near future. Further, a multi-grid analysis procedure was 
introduced to spread through the injection and interpola-
tion between the two analysis grids observation informa-
tion in space and to prevent very noisy analysis. In addi-
tion, the multi-grid procedure was found necessary to 
obtain convergence of the cost-function min imization 
when grid resolution is high (about 10 km). 

In this paper, we follow the standard practice of 
3DVAR data assimilation for NWP (Lorenc 1981; Daley 
1991) by including the analysis background. Conse-
quently, the cost function includes both background and 
observation terms. The use of a background makes the 
problem over-determined and the retrieval feasible for 
experiments using only nine observations per station. 
Furthermore, the spread of observation in space is 
achieved in our analysis through background error corre-
lation. In this study, a spatial filter is used to model the 
background error covariance, and the implementation 
makes it possible to use flow-dependent anisotropic fil-
ters. With the multi-grid technique, it is, difficult, how-
ever, to control or tell the amount of spatial smoothing 
being applied, which affects that spread of observational 
information therefore the quality of analysis.  

We report in the following our work to analyze 3D 
water vapor distribution from a hypothetical GPS obser-
vation network. Sections 2 and 3 describe respectively 
the GPS measurement principle and our 3DVAR re-
trieval method. Section 4 describes how we simulate the 
GPS observation system and obtain mesoscale water 
vapor distribution using such simulated data, together 
with the retrieval results. Conclusions and an outline of 
future work are  presented in the final section. 

 



2. GPS Measurement of Slant Water Vapor 
 

The microwave radio signals transmitted by GPS 
satellites are delayed by the atmosphere as they 
propagate to the ground-based GPS receivers. The 
total delay along the slant path is composed of three 
parts: ionospheric delay, hydrostatic delay and wet 
delay. Ionospheric delay observed by a dual-
frequency GPS receiver can be calculated to millime-
ter accuracy. The hydrostatic delay can be estimated 
with the known pressure and temperature. So the wet 
delay is obtained by subtracting the ionospheric and 
hydrostatic delays from the total delay. Further, the 
wet delay due to the presence of water vapor is nearly 
proportional to the quantity of water vapor integrated 
along the slant path. Bevis et al (1994) gave the rela-
tionship between the slant wet delay (SWD) and the 
slant water vapor (SWV), 

 

SWV SWD= Π • ,  (1) 
 

where SWV  and SWD are given in units of length, 
and Π  is a dimensionless constant, a function of 
weighted mean temperature of the atmosphere. The 
accuracy of SWV with this method is about a few 
millimeters.  

 
3. 3DVAR Retrieval Method 
 

The retrieval method used in this paper is based 
on 3DVAR method (Lorenc 1981; Daley 1991) 
which is to minimize the following cost function,  
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where B is  the background error covariance which 
decides how the observation information can be 
spread in the analysis domain. Since B is very large 
for typical meteorological problems therefore its di-
rect inversion as required by (2) is never attempted. 
Huang (2000) presented a method named variational 
analysis using a filter (VAF) which uses the filter to 
model the effect of B. For instance, the following 
Gaussian filter function can be used to represent B 
for homogeneous and isotropic background error 
field (Daley 1991) for a three dimensional univariate 
problem, 
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where 2
bσ  is the variance of background error, i jr is 

the distance between grid point i and grid point j, and 

rL is the length scale decided by the background error 
correlation and is in practical use sometimes tied to the 
observation station density. This model represents  an 
isotropic background error covariance. The control vari-
able in the VAF method is the increment field relative to 
the background rather than the full analysis field itself. 
Additional details on this method can be found in Huang 
(2000) and our 3DVAR analysis will be based on this 
method. 

 
4. Experimental Design 
 
4.1. Observing System Simulation (OSS) 
 

Currently, high-resolution GPS observation network 
with large spatial coverage does not exist in the United 
States. Similar to MacDonald et al (2002), we test our 
analysis system by using simulated data. Experiments as 
such as commonly referred as Observing System Simula-
tion Experiments and are often used to test the perform-
ance of future observing systems. The simulation model 
is the Advanced Regional Prediction System (ARPS, 
Xue et al 2000) which is a nonhydrostatic model in a 
generalized terrain-following coordinate. High-resolution 
observations from hypothetical GPS networks are cre-
ated from forecast fields for a dryline case that occurred 
on June18, 2002 over the Southern Great Plains during 
the CAPS IHOP real-time forecast period (Xue et al 
2002). The ‘nature’ run is initialized at 1200 UTC June 
18, 2002, and is integrated for 3 hours. The computa-
tional domain is over the Southern Great Plains with 9 
km grid spacing and 53 layers in the vertical.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Specific humidity field (g kg-1) at the sec-
ond model level (~30m) above ground, valid at 
1500 UTC June 18, 2002, from the ‘nature’ run. 

 



Considering that in the near future, mean spacing 
of ground receivers of GPS observation networks will 
probably not be much less than a hundred kilometers, 
thus the scale of water vapor distribution we can ob-
tain should be of mesoscale. The 9-km 3-hour fore-
cast field, therefore, is thinned by sampling specific 
humidity every 4 grid points, yielding a resolution of 
36 km and a horizontal grid size of 46×41. This grid-
ded field is defined as ‘nature’ run and used to gener-
ate the hypothetical GPS slant water vapor observa-
tion data. The specific humidity field at the second 
model layer (about 30 meters) above ground from the 
‘nature’ run data is presented in Fig.1. A roughly 
north-south zone of sharp moisture gradient is located 
to the west of Kansas, Oklahoma and Texas, corre-
sponding to the dryline located in the region. Such 
strong gradient as well as the variations in strong 
gradient in water vapor may not be properly captured 
by ordinary moisture observation networks, espe-
cially at levels away from the ground. However, the 
integrated water vapor along slant paths between sur-
face GPS receivers and satellite can provide three-
dimensional information with high temporal and spa-
tial resolutions.  

For our OSS experiments, the slant water vapor 
is obtained by formula , 
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SWV qds= ∫ , (4)  

where ds is the length of elements along slant path, 

ijSWV the integrated water vapor along the slant path 

between the t hi  ground-based GPS receiver and the 
thj  GPS satellite, and q is  the specific humidity 

along the path elements. This value is given by tri-
linear interpolations from eight surrounding grid 
points. The hypothetical GPS network is composed 
of nine irregularly distributed satellites simultane-
ously in view, and of 132 ground-based receivers 
which are distributed evenly in the domain. The hori-
zontal resolution of GPS receivers is 144 km so that 
there is one observation station every 4 points of the 
36 km analysis grid. Both sampling and analysis 
grids are on the ARPS terrain-following coordinate. 
  
4.2. Control Experiment 
 

A control experiment (CNTL) is first performed.  
In this  experiment, two kinds of observation data are 
used which are the SWV observations from the hypo-
thetical GPS network and the surface regular water 
vapor observations coincident with ground-based 
GPS receivers. The receiver sites are commonly 
equipped with regular meteorological sensors.  The 
analysis background is created by smoothing the ‘na-
ture’ run 50 times. The control experiment uses 3D 

Gaussian-type filter with effective filter scales of four 
grid intervals  to simulate the background error covari-
ance. The cost function defined by Eq. (2) is minimized 
with respect to the increment of specific humidity. Ow-
ing to the insignificant effect of the filter on the far dis-
tance, the cutoff radii are chosen to be 3 grid intervals in 
the horizontal and 3 layers in the vertical. The relatively 
small filter sales and cutoff radii are chosen so that gaps 
between receiver stations are filled without excessive 
smoothing to the analysis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With above parameter settings, the control run is 

conducted. The retrieved moisture field of control run 
matches well the ‘nature’ run. Their correlation coeffi-
cient for the entire grid is about 0.83. To assess the per-
formance of control experiment, the increment fields, 

 
(b) 

(a)  

Fig. 2. The increment fields of specific humid-
ity in g kg-1 at the second model level (~30m) 
above ground for (a) the ‘nature’ run and (b) 
the control experiment. 



relative to the background, of the ‘nature’ and control 
runs are compared. As an example, their increments 
at the second model level above ground, are shown in 
Fig. 2a and 2b, respectively. In Fig. 2a, there is a 
strong gradient of moisture increment accompanied 
with maximum and minimum centers located at 
southeast of New Mexico.  This  moisture structure is 
properly recovered by our 3DVAR analysis  as shown 
in Fig. 2b, especially with respect to the relative posi-
tion of the maximum and minimum centers in the 
increment field. The retrieved dryline is in the right 
place. 
 
4.3. Sensitivity Experiments 
 

In order to test the effect of surface moisture ob-
servations and vertical filter on the retrieval, two 
more experiments are conducted.  

The first experiment does not include surface ob-
servations while other parameter settings are the 
same as the control experiment.  The retrieval result 
shows  that there are only slight differences between 
this experiment and the control run for moisture dis-
tribution above 600 meters AGL. This indicates that 
the retrieval without surface observations can still 
capture major features of the 3D moisture field. 
However, the overall correlation coefficient between 
retrieval and ‘nature’ is now 0.69, about 0.14 less 
than the control run. The decrease in accuracy is 
mostly due to differences at the lower levels where 
the surface observations have significant impact. In 
the absence of surface observations, the low-level 
background field is little adjusted by the GPS data. 
This is so since it is the overlapping slant lines in 
three-dimensional space that provide information for 
3D water vapor retrieval. Near the surface, very few 
slant paths go through the atmosphere due to the rela-
tively high elevation angles of most satellites. The 
relatively small analysis domain also limits the low-
est elevation angle of usable paths. 
        To determine the effect of vertical filter on the 
retrieval, only the horizontal filter is used in the sec-
ond sensitivity experiment, named NVF.  All other 
parameter settings are the same as in the control run. 
Figure 3 shows the vertical profiles of RMS errors of 
specific humidity field at horizontal levels from the 
control and NVF runs. It is clear that the errors of the 
control run that used vertical filter are smalle r than 
those of NVF. The maximum error for CNTL is 
about 0.8 k kg-1 but 1.2 k kg-1 for NVF. There is al-
most no difference at the surface owing to the use of 
surface observations. This  experiment indicates that 
without vertical filtering, the retrieved water vapor at 
the low levels is  poor, except at the surface where 
surface observations are directly available. The rea-
son is  again that very few slant paths go through 

these levels . In the absence of vertical filtering, surface 
observation information cannot be spread upward to 
yield a positive effect on the boundary-layer analysis . In 
conclusion, the vertical filter helps spread observation 
information in the vertical direction and improves the 
quality of analysis, especially at the lower levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusion and Future Plan 
 

The aim here is to recover three-dimensional water 
vapor structure from a hypothetic GPS observation net-
work. This  network provides integrated water vapor 
along slant paths between GPS satellites and ground-
based receivers and sometimes also direct moisture 
measurements at the receiver sites. The ARPS mesoscale 
model is used to produce a “true” atmospheric moisture 
field, which is used to construct simulated GPS slant-
path water vapor data. Three-dimensional variational 
retrieval experiments are conducted with VAF method. 
The results illustrate that this variational retrieval method 
can properly recover mesoscale three-dimensional mois-
ture structure and accurately capture major features of 
water vapor field simulated by the model in the presence 
of surface observations. In addition, two sensitivity ex-
periments are conducted to test the effects of surface 
moisture observations and vertical filter on the retrieval. 
Results indicate that surface moisture observations are 
most important for accurate analysis of water vapor field 
at low levels , where few slant paths pass through. The 
vertical comp onent of the spatial filter is shown to be 
very beneficial, especially in data-sparse regions such as 
the low levels . Otherwise, only the moisture field at mid-
dle troposphere can be properly retrieved where enough 
GPS slant paths overlap. The retrieval in the boundary 
layer would be improved if more low-elevation angle 
slant paths were available. 

Fig. 3. The RMS error in g kg-1 with height.  
Solid line is for the control run and dashed 
line for the NVF run. 
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In addition, the use of isotropic background error 
covariance is based on the assumption that back-
ground errors at nearby points are similar. Riisho-
jgaard (1998) points out that the background errors at 
nearby points that have similar values of the analysis 
field tend to be similar. Flow-dependent background 
error covariance based on such an assumption should 
improve the analysis, especially when data is sparse. 
This is a topic for future study. Furthermore , we will 
test the quality of moisture analysis from GPS and 
other observations by performing forecast experi-
ments using ARPS. 
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