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Abstract

This paper outlines the basic concept and mathe-
matical formulation of the Local Ensemble Kalman
Filter (LEKF, Ott et al. 2002 and 2003) data assim-
ilation scheme. Some important properties of the
scheme are illustrated by numerical experiments
with the Lorenz-96 model. Initial implementations of
the LEKF on the National Centers for Environmen-
tal Prediction Global Forecast System (NCEP GFS)
are discussed. Tests of these implementations un-
der the perfect model hypothesis are conducted.

1. INTRODUCTION

The accuracy of a data assimilation scheme
strongly depends on the accuracy of the assumed
background error statistics. Since the true back-
ground errors are not known, the implementation
of a data assimilation system requires the develop-
ment of statistical models that can provide an esti-
mate of the background error covariance matrix.

In the case of linear dynamics, the mathe-
matically consistent technique to define a back-
ground error covariance matrix is the Kalman Fil-
ter (Kalman 1960; Kalman and Bucy 1961) which
utilizes the dynamical equations to evolve the most
probable state and the error covariance matrix in
time. In the case of linear systems with unbiased
normally distributed errors the Kalman Filter pro-
vides estimates of the system state that are opti-
mal in the mean square sense. The method has
also been adapted to nonlinear systems, but, in this
case, optimality no longer applies. Although the
Kalman Filter approach has been successfully im-
plemented for a wide range of applications and has
been considered for atmospheric data assimilation
for a long while (e.g., Ghil et al. 1981) the computa-
tional cost involved does not allow for an operational
implementation in the foreseeable future (see Daley
1991 for details).

Currently the most popular approach toward re-
ducing the cost of the Kalman Filter is to use a rel-
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atively small (10-100 member) ensemble of back-
ground forecasts to estimate the background er-
ror covariances (e.g. Evensen 1994; Houtekamer
and Mitchell 1998, 2001; Anderson 2001; Bishop
et al. 2001; Hamill et al. 2001; Whitaker and
Hamill 2002; Keppenne and Rienecker 2002). In
ensemble-based data assimilation schemes the en-
semble of background forecasts is generated by us-
ing initial conditions distributed according to the re-
sult of the previous analysis.

The main difference between the existing
ensemble-based schemes is in the generation of
the analysis ensemble. One family of schemes
is based on perturbed observations (Evensen and
van Leeuwen 1996; Houtekamer and Mitchell 1998,
2001; Hamill and Snyder 2000, 2001, Keppenne
and Rienecker 2002). In this approach, the analysis
ensemble is obtained by assimilating a different set
of observations to each member of the background
ensemble. The different sets of observations are
created by adding random noise to the real obser-
vations, where the random noise component is gen-
erated according to the observational error covari-
ance matrix. Such a system has been developed at
the Canadian Meteorological Service and was re-
cently reported to break even with the operational
3D-Var scheme (Houtekamer et al., 2003).

The other family of schemes, the Kalman
square-root filters, uses a different approach to re-
duce the size of the ensemble. These techniques
do the analysis only once, to obtain both the mean
analysis and the analysis error covariance matrix.
Then the analysis ensemble perturbations (to the
mean analysis) are generated by linearly transform-
ing the background ensemble perturbations to a set
of vectors that can be used to represent the anal-
ysis error covariance matrix. Thus, the analysis is
confined to the subspace of the ensemble. Since
there is an infinite set of analysis perturbations that
can be used to represent the analysis error covari-
ance matrix, many different schemes can be de-
rived following this approach (Tippett et al., 2002).
Existing examples of the square root filter approach
are the Ensemble Transform Kalman Filter (Bishop
et al. 2001), the Ensemble Adjustment Filter (An-



derson 2001), and the Ensemble Square-root Filter
(Whitaker and Hamill 2001).

2. THE BASIC CONCEPT

The scheme we propose is a Kalman square-root
filter (Ott et al., 2002, 2003). In a sense, our tech-
nique is related to previous work that attempted to
construct a simplified Kalman filter by explicitly tak-
ing into account the dominant unstable directions
of the state space (Kalnay and Toth 1994; Fisher
1998). The most important difference between our
scheme and the other Kalman square-root filters is
that the LEKF is not a sequential data assimilation
algorithm. This difference is illustrated by a pair of
schematic figures (figures 1 and 2).

FIG. 1: Illustration of the process of updating the state
estimate in a sequential data assimilation scheme. Ob-
servations (blue diamond) are sequentially used to up-
date the state estimate is updated at all grid points (red
grid points) within the correlation distance (black circle)
from the observations. Background information is used
from the grid points at which the state is updated. At grid
points beyond the correlation distance (black grid points)
the state estimate is not updated.

On the one hand, a sequential scheme updates
the model variables at all grid points within a pre-
defined correlation length from the observations.
This means that the analysis at a given grid-point is
updated iteratively until all observations within the
correlation length from the grid point have been as-
similated. On the other hand, the LEKF is based
on the construction of local regions about each grid
point. The basic idea is that we do the analysis at
each grid point simultaneously using the state vari-
ables and all observations in the local region cen-
tered at that point. (A similar computational model

FIG. 2: Illustration of the process of updating the state
estimate in the LEKF. The knowledge of all observations
within the local region (blue diamonds) is simultaneously
used to update the state is at the center of the local re-
gion (red grid point) using background information from
all grid points within the local region (green grid points).
The shape of the local region is somewhat arbitrary. Here
we have indicated it as circular, but in section 5, for con-
venience of implementation, we will use a square shape.

was outlined in Anderson (2001), where the the
equivalent of the local region was called compute
domain.)

In the LEKF, the assimilations in each local grid
point are independent, thus facilitating a massively
parallel update approach using a straightforward
static load balancing strategy between the comput-
ing units. We believe that this is an advantage
over the sequential schemes, which can be imple-
mented in a parallel computational environment, but
for which load balancing is problematic. This is due
to the feature of the sequential schemes that the
main computational cost is proportional to the num-
ber of observations. In contrast, the computational
cost of the LEKF is proportional to the number of
ensemble members. The suitable number of en-
semble members depends on the complexity (di-
mensionality) of the dynamics of the model, which
does not change for a given model and is indepen-
dent of the number of observations.

Another potential disadvantage of the sequen-
tial schemes arises when the neighboring obser-
vations have correlated errors throughout a large
area. Distributing such observations between the
computing unit would introduce artificial zero cor-
relations between the distributed subsets of data.
The LEKF does not have this problem, since it only
assumes that correlations between observations in-



side and outside of the local regions have no effect
on the analysis at the center of the local regions.
These correlations are taken into account in other
local regions.

While the sequential assimilation of observa-
tions has been shown to be a powerful approach for
the case when the number of observations is much
lower than the number of grid points (Houtekamer
et al. 2003; Whitaker et al. 2003); our scheme
will be of particular interest when the dimensionality
of the model dynamics in the local regions is typi-
cally much lower than the number of observations.
In the future this condition will become progres-
sively better satisfied as ever-increasing amounts
of remotely-sensed data become available. The ul-
timate test of our scheme is whether it can be used
to build an efficient data assimilation scheme. Later
in this paper, we show some preliminary evidence
that this is indeed the case.

3. MATHEMATICAL FORMULATION

For each grid point, we define a corresponding lo-
cal region that consists of all grid points within a
suitably prescribed neighborhood of that grid point.
While the size and shape of the local regions are
somewhat arbitrary, we desire that the local regions
be sufficiently large that on average, include all grid
points whose state field values have significant cor-
relation with the state fields at the corresponding
central grid point. In general, the model state within
a local region is specified by all the model field vari-
ables evaluated at all grid points within the local re-
gion.

Let xl (m, n, o) the d-dimensional local vector
representing the model state within the local region
centered at the grid point (m, n, o). The construction
of this local vector can be represented by a linear
localization operatorL,

xl (m, n, o, t) = Lxg(t). (1)

where the vector xg represents the state of the
model on the global three-dimensional grid. Since
all the analysis operations take place at a fixed time
t and are repeated for all local regions, we will sup-
press the t , m, n, and o dependence of all vectors
and matrices introduced henceforth.

We solve the Kalman-filter equations for the lo-
cal vectors. The most probable state of the lo-
cal background vector xb

l is x̄b
l and the local back-

ground vector is Pb
l . As explained subsequently, the

rank of the d by d covariance matrix Pb
l for our ap-

proximate probability distribution function is taken to
be much less than d .

In the data assimilation procedure we describe
in this paper, the background error covariance ma-
trix Pb

l and the most probable background state x̄b
l

are derived from a k +1 member ensemble of global
state field vectors xb(i)

g , i = 1, 2, · · · , k +1; k ≥ r ≥ 1.
The most probable local state is given by

x̄b
l = L

[
(k + 1)−1

k+1

∑
i=1

xb(i)
g

]
. (2)

The local background error covariance matrix Pb is
estimated by Pb

l given by

Pb
l = k−1

k+1

∑
i=1

δxb(i)
l

(
δxb(i)

l

)T
, (3)

where the superscribed T denotes transpose, and

δxb(i)
l = Lxb(i)

g − x̄b
l . (4)

It is also useful to introduce the notation

Xb
l = (k )−1/ 2[δxb(1)

l | δxb(2)
l | · · · | δxb(k+1)

l

]
, (5)

in terms of which (3) can be rewritten,

Pb
l = Xb

l X
bT
l . (6)

We anticipate that we can approximate the back-
ground error covariance matrix by one of lower rank
than d , and this motivates our assumption that an
ensemble of size of k + 1, where k + 1 may be sub-
stantially less than d , will be sufficient to yield a
good approximate representation of the background
covariance matrix. [In the version of the LEKF
method reported here we take the rank r of our
approximate Pb

l to be r = k , but we note that the
theory for the more general choice r ≤ k is also
available (Ott et al., 2003).] Since Pb

l has rank k , it
has k positive eigenvalues. Let the eigenvalues of
the matrix Pb

l be denoted by λ(j), where the labeling
convention for the index j is

λ(1) ≥ λ(2) ≥ . . . ≥ λ(r ) ≥ · · · ≥ λ(k ). (7)

Since Pb
l is a symmetric matrix, it has k orthonor-

mal eigenvectors
{
u(j)

}
corresponding to the k

eigenvalues (7). Thus

Pb
l =

k

∑
j=1

λ(j)u(j)(u(j))T . (8)

Since the size of the ensemble (k + 1) is envi-
sioned to be much less than the dimension of xb

l
(d), the computation of the eigenvalues and eigen-
vectors of Pb

l is most effectively done in the basis
of the ensemble vectors. That is, we consider the



eigenvalue problem for the (k + 1) × (k + 1) matrix
XbT Xb, whose nonzero eigenvalues are those of
Pb

l [7] and whose corresponding eigenvectors left-
multiplied by Xb are the k eigenvectors u(j) of Pb

l .
For the purpose of subsequent computation,

we consider the coordinate system for the k dimen-
sional space determined by the basis vectors {u(j)}.
We call this the internal coordinate system for the k -
dimensional analysis space. We denote the projec-
tion of vectors into the k -dimensional space and the
restriction of matrices to the same space by sup-
pressing the subscript l . The operator of this pro-
jection is

Q =
{
u(1)|u(2)| · · · |u(k )}. (9)

For instance, for the d dimensional local back-
ground vector xb

l , the vector xb is an k dimensional
column vector given by

xb = QT xb
l . (10)

Note that this operation consists of both projecting
xb

l into the r-dimensional space and changing to
the internal coordinate system. Similarly, for a d by
d matrix, such as the local background covariance
matrix Pb

l , the matrix Pb is k by k and given by

Pb = QT Pb
l Q. (11)

We also note, that in the internal coordinate system
Pb is diagonal,

Pb = diag
(
λ(1), λ(2), ..., λ(k )), (12)

and thus it is trivial to invert.
Let xa

l be the random variable at the current
analysis time t representing the local vector af-
ter knowledge of the observations and background
mean are taken into account. For simplicity, we as-
sume that all observations collected for the current
analysis were taken at the same time t . [A sim-
ple technique to extend the scheme to the assimila-
tion of of asyncronous observations is presented in
Sauer et al. (2004).] Let yo

l be the vector of current
observations within the local region, and R be the
observational error covariance matrix of those ob-
servations. An ideal (i.e., noiseless) measurement
is a function of the true atmospheric state. Con-
sidering measurements within the local region, we
denote this function Hl (·). That is, if the true lo-
cal state is xa

l , then the error in the observation is
yo

l −Hl (xa
l ). Assuming that the true state is near the

mean background state x̄b
l , we approximate Hl (xa

l )
by linearizing about x̄b

l ,

Hl (xa
l ) ≈ Hl (x̄b

l ) + Hl∆xa
l , (13)

where
∆xa

l = xa
l − x̄b

l , (14)

and the matrix Hl is the Jacobian matrix of partial
derivatives of Hl evaluated at x̄b

l . (If there are s
scalar observations in the local region at analysis
time t , then ȳo

l is s dimensional and the rectangular
matrix Hl is s by d). The data assimilation step
determines x̄a

l (the local analysis) and Pa
l (the local

analysis covariance matrix).
The most probable value of ∆xa is

∆x̄a = PaHT R−1(yo −H(x̄b)
)
, (15)

Here H = HlQ maps variables from the analysis
space to the observation space, ∆xa = QT ∆xa

l is
the analysis increment in the k -dimensional analy-
sis space, and Pa is the analysis error covariance
matrix in the same k-dimensional space. In (15), Pa

is determined from (e.g., Kalnay 2003)

Pa = Pb[I + HT R−1HPb]−1
, (16)

Finally, going back to the local space representa-
tion, we have

x̄a
l = Q∆x̄a + x̄b. (17)

The components of the most probable global anal-
ysis field x̄a

g at the grid point (m, n, o) are ob-
tained by first selecting the local analysis vector
x̄a

l (m, n, o) associated with the local region centered
at (m.n, o), and then copying the components of
x̄a

l (m, n, o) at the central grid point.
Our only remaining task is to obtain an ensem-

ble of global analysis fields
{
xa(i)

g
}

; i = 1, 2, · · · , k +1
based on the local analysis information, Pa and x̄a.
Once these fields are determined, they can be used
as initial conditions for the atmospheric model. In-
tegrating these global fields forward in time to the
next analysis time t + ∆t , we obtain the background
ensemble

{
xb(i)

g (t + ∆t)
}

. This task is accomplished
by first finding the (k +1) local analysis perturbations
δxa(i)

l ,
δxa(i)

l = Qδxa(i), (18)

then forming the local analysis ensemble

xa(i)
l = x̄a

l + δxa(i)
l . (19)

and finally obtaining the members of the global
analysis ensemble

{
xa(i)

g
}

; i = 1, 2, · · · , k +1, follow-
ing the same strategy we used to create the global
mean analysis based on the local information. In-
tegrating these global fields forward in time to the
next analysis time t + ∆t , we obtain the background
ensemble

{
xb(i)

g (t + ∆t)
}

.



The local analysis perturbations δxa(i) are found
by linearly combining the local background pertur-
bations in the k -dimensional analysis space

Xa = XbY. (20)

where

Xa,b =
(
k
)−1/ 2{

δxa,b(1)|δxa,b(2)| · · · |δxa,b(k+1)}.
(21)

and

Y =
[
I+XbT (

Pb)−1(
Pa−Pb)(Pb)−1

Xb
]1/ 2

. (22)

This construction of the local analysis perturbations
has the desirable properties that (i) it does not dis-
tort the mean of the analysis ensemble

k+1

∑
i=1

δxa(i) =
k+1

∑
i=1

δxa(i)
l = 0, (23)

(ii) it correctly represents the analysis uncertainty

Pa = XaXaT . (24)

and (iii) it preserves the smoothness of the back-
ground ensemble fields as closely as possible, by
satisfying the constraint that the functional

F(δx̂a(i)
mn ) =

k ′+1

∑
i=1

∥∥δx̂a(i)
mn − δx̂b(i)

mn

∥∥2
(25)

=
k+1

∑
i=1

[
δx̂a(i)

mn − δx̂b(i)
mn

]T
D−1[δx̂a(i)

mn − δx̂b(i)
mn

]
, (26)

is minimal when the metric D−1 is chosen to be
D−1 = Pa or D−1 = Pb. Constraint (25) ensures
that changes to the physical fields, introduced by
transforming the background perturbations to en-
semble perturbations, are minimal with respect to
the metric D−1. Without imposing constraint (iii) the
transformation matrix Y would not be uniquely de-
fined (see Ott 2003 for details). In fact, past work
(Tippett et al., 2003) provide no basis for choosing
among the solutions of (23) and (25).

4. TESTS WITH THE LORENZ-96 MODEL

Initial testing of the LEKF scheme was carried out
with Lorenz-96 (L96) model (Lorenz 1996; Lorenz
and Emanuel 1998),

dxm

dt
= (xm+1 − xm−2)xm−1 − xm + F. (27)

Here, m = 1, · · · , M, where x−1 = xM−1, x0 = xM ,
and xM+1 = x1. This model mimics the time evolution
of an unspecified scalar meteorological quantity, x ,

at M equidistant grid points along a latitude circle.
We solve (27) with a fourth-order Runge-Kutta time
integration scheme with a time step of 0.05 non-
dimensional unit (which may be thought of as nom-
inally equivalent to 6-h in real world time assuming
that the characteristic time scale of dissipation in
the atmosphere is 5-days; see Lorenz 1996 for de-
tails).

For our chosen forcing, F = 8, the steady state
solution, xm = F for m = 1, · · · , M, is linearly un-
stable. This instability is associated with unstable
dispersive waves characterized by westward (i.e., in
the direction of decreasing m) phase velocities and
eastward group velocities. Lorenz and Emanuel
(1998) demonstrated by numerical experiments for
F = 8 and M = 40 that the x field is dominated by
a wave number 8 structure, and that the system is
chaotic; it has 13 positive Lyapunov exponents, and
its Lyapunov dimension (Kaplan and Yorke 1979)
is 27.1. We carried out experiments with three dif-
ferent size systems (M = i × 40, i = 1, 2, 3) and
found that increasing the number of variables did
not change the wavelength, i.e. the x fields were
dominated by wavenumber i × 8 structures.

The 40-variable version of the L96 model was
also used by Whitaker and Hamill (2002) to validate
their ensemble square root filter (EnSRF) approach.
In designing our numerical experiments we follow
their approach of first generating the ‘true state’,
x t

m(t), m = 1, · · · , M, by a long (40,000 time-step)
model integration; then creating ‘observations’ of all
model variables at each time step by adding uncor-
related normally distributed random noise with unit
variance to the ‘true state’ (i.e., Rm = I). (The rms
random observational noise variance of 1.00 is to
be compared with the value 3.61 of the time mean
rms deviation of solutions, xm(t), of (27) from their
mean.) We found that our results were the same for
Gaussian noise and for truncated Gaussian noise
(we truncated at three standard deviations). The
effect of reduced observational networks is stud-
ied by removing observations one by one, start-
ing from the full network, at randomly selected lo-
cations. The reduced observational networks are
fixed for all experiments. That is, the difference be-
tween a network with O observations and another
with O + 1 observations is that there is a fixed loca-
tion at which only the latter takes observations.

The observations are assimilated at each time
step, and the accuracy of the analysis is measured
by the time mean of the rms error,

E =
( 1

M

M

∑
m=1

(x̄a
m − x t

m)2
)1/ 2

. (28)



In order to the assess the skill of our data assimi-
lation scheme in shadowing the true state, we con-
sidered three alternative schemes for comparison.

Full Kalman filter. For the sake of compari-
son with our local ensemble Kalman filter results,
we first establish a standard that can be regarded
as the best achievable ensemble Kalman filter re-
sult that could be obtained given that computer re-
sources placed no constraint on computations of
the analysis. (In contrast with operational weather
prediction, for our simple M-variable Lorenz model,
this is indeed the case.) For this purpose, we con-
sidered the state x(t) =

(
x1(t), x2(t), · · · , xM (t)

)
on

the entire domain rather than on a local patch.
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FIG. 3: The rms error of the full Kalman filter as func-
tion of the number of ensemble members. Shown are
the results for M=40 (solid line), M=80 (dashed line), and
M=120 (dotted dashed line).

Figure 3 shows, for the case in which all M = 40
variables are observed, that by increasing the num-
ber of ensemble members the time mean of E con-
verges to 0.20 regardless of M. The only differ-
ence between the different size systems (character-
ized by different values of M) is that more ensemble
members are required to reach the minimum value
for the larger systems. We refer to 0.2 as the “opti-
mal” error, and we regard it as a comparison stan-
dard for our local Kalman filter method. (However,
we note that it is not truly optimal since Kalman fil-
ters are rigorously optimal only for linear dynamics.)

Conventional method. We designed another
comparison scheme that we call the conventional
method, to obtain an estimate of the analysis er-
ror that can be expected from a procedure analo-
gous to a 3D-Var scheme adapted to the L96 model.
In this scheme, only the best estimate of the true
state is sought (not an ensemble of analyses) us-
ing a constant estimate of the background error co-
variance matrix that does not change with time or
position. This background error covariance matrix

was determined by an iterative process (see Ott et
al. 2003) and was recomputed for each observa-
tional networks. The estimate obtained this way
is not necessarily optimal in the sense of provid-
ing the smallest possible analysis error of any con-
stant background error matrix, but it has the de-
sirable feature that the background error statistics
are correctly estimated by the analysis scheme.
This is a big advantage compared to the opera-
tional schemes, for which the estimate of the back-
ground error covariance matrix has to be computed
by rather ad hoc techniques, since the true state,
and therefore the true background error statistics,
are not known. Thus, it might be assumed that our
“conventional method” provides an estimate of the
analysis error that is of good accuracy as compared
to analogous operational schemes.

Direct insertion. We now give a third standard
designed to decide whether the data assimilation
schemes provide any useful information compared
to an inexpensive and simple scheme, not requiring
matrix operations. This scheme updates the state
estimate by replacing the background with the ob-
servations, where observations are available, and
leaving the background unchanged, where there
are no observations.
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FIG. 4: The rms error of the local ensemble Kalman
filter as function of the number of ensemble members.
Shown are the results for M=40 (solid line), and for M=80
and M=120 which coincide (dashed line).

Local ensemble Kalman filter Figure 4 shows,
for the case when all M=40 variables are observed,
that when the ensemble has at least eight mem-
bers, the analysis error settles at the level (0.2) of
the ”optimal” scheme, independently of the number
of variables. This is roughly consistent with the sup-
position of an effective correlation length for the dy-
namics that is less than M. Thus our method ap-
pears to be effective on large systems of this type.
Moreover, the (non-parallelized) analysis computa-



tional time scales linearly with the number of local
regions (i.e., with M). This favorable scaling is to
be expected, since the analysis computation size in
each local region is independent of M.

We note, that the aforementioned scaling prop-
erty of the local Kalman filter is in contrast to the be-
havior of the full Kalman filter, which requires many
more members, and also an increasing number of
members for an increasing number of variables,
to achieve the ”optimal” precision. This demon-
strates the potential superiority of the local Kalman
filter (and presumably other methods that use co-
variance localization) in terms of computational effi-
ciency when applied to large systems. On the other
hand, it also means that, since the minimum error
was independent of M, it suffices to use the small-
est, 40-variable, system for further experimentation.
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FIG. 5: The rms error of the different analysis schemes
as function of the number of observations. Shown are
the results for the full Kalman filter [4% variance inflation]
(dashed line), conventional scheme (dashed-dotted line),
direct insertion (solid line with diamonds), and the local
ensemble Kalman filter [3% variance inflation] (solid line).

The four data assimilation schemes (local en-
semble Kalman Filter, full Kalman filter, conven-
tional method, and direct insertion) were compared
for different numbers of observations (figure 5). The
two Kalman filter schemes give almost identical er-
ror results, although the full Kalman filter has a very
small advantage. The two Kalman filter schemes
and the conventional data assimilation scheme are
always more accurate than direct insertion, indicat-
ing that they are always able to retrieve nontrivial,
useful information about the true state. The two
Kalman filter schemes, in addition, have a grow-
ing advantage over the conventional scheme as the
number of observations is decreased. This shows
that, as the observational network and the back-

vertical localization NO PG
blue no 80 100%

green no 80 10%
red no 40 10%

magenta yes 40 10%

Table 1: Parameters of the different implementations of
the LEKF scheme on the NCEP GFS.

ground error become more inhomogeneous, the
adaptive nature of the background error covariance
matrix in the Kalman filters leads to a growing ad-
vantage over the static schemes.

5. INITIAL IMPLEMENTATION ON THE NCEP
GFS

Tests have been carried out with four different im-
plementations of the LEKF algorithm on the T62
horizontal resolution, 28-level, 2001 version of the
NCEP GFS. In three of these implementations the
localization is done only in the horizontal direction,
while in the fourth implementation vertical localiza-
tion is also included. The number of ensemble
members (NO) and portion of grid points observed
(PG) also varies between the implementations. In
figures 6-8, the different implementations are distin-
guished by colors and the parameters associated
with the different colors are listed in table 1 (the
black line always represents the rms observational
error).

FIG. 6: The global rms error of the temperature anal-
ysis at the 50 kPa pressure level (y-axis) as function of
time (x-axis.



FIG. 7: The global rms error in the analysis of the tem-
perature (x-axis) as function of altitude (y-axis) [hPa].

The horizontal localization is done on the 144-by-
73 grid points of the Gaussian model grid, and, at
the poles, in order to avoid introducing artificial sin-
gularities extra latitudes were also added, making
the proper definition of the local regions possible
on the entire globe. Visually, one may think of our
approach as defining local regions on polar stere-
ographic map projections near the poles. In the
experiments reported here, the local regions are
uniformly defined by 9-by-9 horizontal grid points.
When vertical localization is used, the number of
model levels in the local region varies with the al-
titude. In layers, where the vertical gradient of the
atmospheric fields are bigger (e.g., near the surface
and the jet layer) the local regions consist of fewer
layers.

In our experiments, the “true” state was gen-
erated by a 30-day integration of the T62 GFS
model, started from the operational NCEP analy-
sis at 0000 UTC on 1 January 2000. The observed
data were generated by adding zero-mean, Gaus-
sian random noise (observational error) to the true
state. The variances of the errors are 1 K for the
temperature, 1.1 m/s for the two horizontal com-
ponents of the wind, and 1 hPa for the surface
pressure. The humidity and ozone variables were
not observed. Neither were surface analyses pre-
pared; the lower boundary conditions were substi-
tuted from the nature run.

As we expected, the scheme proved to be
highly efficient. The assimilation of 1.5 × 106 simu-
lated observations (wind, temperature, and surface
pressure), using a 40-member ensemble and hor-

FIG. 8: The rms error in the analysis of the zonal wind
component in the NH extratropics (300N − 700N, x-axis)
as function of altitude (y-axis) [hPa].

izontal localization, takes about 6 minutes of wall-
clock time on a Beowulf cluster of forty 2.8-GHz In-
tel Xeon processors, a reasonably fast result for a
Kalman filter of this resolution. When the number of
ensemble members was increased to 80, the wall-
clock time became about 12 minutes. When the
ensemble had 40 members and localization in the
vertical direction was also included, the wall-clock
time was about 10 minutes.

We found that the analysis error converges to
its asymptotic value for all variables within a few
days (an example is shown in figures 6). The
asymptotic value of the analysis error is typically
smaller than the observational uncertainty. The
only exceptions are the temperature in the bound-
ary layer and the wind components in the jet layer.
These are the vertical layers, where the variables
have the largest gradient. Having more observa-
tions and ensemble members, and/or using verti-
cal localization all increase the speed of conver-
gence. The effect of vertical localization is espe-
cially striking, considering that it leads to a much
faster convergence than the combined effect of dou-
bling the ensemble size and increasing the number
of observations by a factor of ten. This property is
not totally unexpected, since the vertical localiza-
tion decreases the dimension of the local regions
(d), allowing for a better local representation of the
background structures by the relatively small en-
sembles. The effect of changing the parameters
on the asymptotic values of the analysis errors is
less dramatic, though the magenta and the blue im-



plementations are clearly superior to the other two.
The difference between the two runs (magenta and
blue) is practially negligible, except near to the top
of the model atmosphere, where the the vertical lo-
calization leads to a superior performance.

The accuracy of the analysis in the jet layer
clearly improves with increasing the number of en-
semble members and observation and/or introduc-
ing vertical localization. This leaves us with only
one major concern regarding the performance of
our initial implementations of the LEKF scheme: the
large temperature error at the surface. A detailed
analysis of this problem showed the following in-
teresting features: the large global error is due to
large errors over land; the large rms error is due
to a large bias (mean error) component; the error
is essentially identical for the different implementa-
tions, except for the first 5-10 days, when the error
is much smaller than the observational uncertainty
and the better (blue and magenta) implementations
have a clear advantage. If our experiments were
not conducted under the perfect model hypothesis,
we would almost certainly conclude that the large
temperature errors near the surface are due to a
model bias. Having a perfect model experimental
design, however, we have no other choice than to
accept that the errors at the surface are due to a
formulation problem in our scheme. We suspect
that this problem is due to the strong influence of
the Earth’s surface in shaping the background er-
ror covariance near the surface. Since this influ-
ence is more closely related to the boundary con-
ditions than to the dynamical evolution of the flow,
the Kalman filter has difficulties with tracking the er-
rors near the surface. This picture is also supported
by our forecast experiments (not presented in this
paper), which indicate that the temperature errors
near the surface are not growing, i.e., they are not
associated with instabilities. Nevertheless, the fact
that the LEKF was able to efficiently correct the tem-
perature errors near the surface in the first few days,
makes us believe that these errors can be reduced
by a randomized additive variance inflation of the
temperature component of the background ensem-
ble perturbations (Corazza et al. 2002). Finally, we
note that this example illustrates the importance of
performing the initial testing under the perfect model
assumption.

6. CONCLUSIONS

Our ultimate goal is to develop the present imple-
mentation of the LEKF method on the NCEP GFS
into an operationally attainable Kalman filter, capa-

ble of assimilating a wide range of meteorological
observations, including those collected by remote-
sensing instruments. Our experiments so far in-
dicate that the the algorithm has the computation-
ally efficiency required to accomplish this ambitious
goal. Our plan is to proceed through completing the
following tasks:

1. Elimination of the relatively large temperature
analysis errors near the surface, by introducing
and tuning an additive random variance infla-
tion scheme.

2. Assimilation of real wind, temperature and sur-
face pressure observations taken by radioson-
des. Major challenges, associated with adapt-
ing the scheme to an imperfect model environ-
ment, are expected.

3. Assimilation of simulated humidity and ozone
observations within the LEKF procedure.

4. Assimilation of a gradually expanding set of
observations including a growing number of
remotely-sensed observations.
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