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1. INTRODUCTION 
 
In recent years visibility concerns have come to 

the forefront in the air quality community. Millions of 
visitors to national parks in the United States have 
their views obstructed by pollution-induced haze. 
The USEPA reports that average visibility in the 
east has been reduced from 90 miles to 15-25 miles 
(http://www.epa.gov/oar/visibility/what.html). To 
address this issue, the USEPA in 1999 instituted 
policies to improve visibility in the national parks.  
As part of this initiative, five multi-state regional 
planning organizations (RPO) were formed. The 
RPO governing visibility issues in the southeastern 
US is the Visibility Improvement State and Tribal 
Association of the Southeast (VISTAS) 
(http://www.vistas-sesarm.org/).  

 
VISTAS recognizes the regional nature of haze, 

and has therefore set up a modeling approach to 
address the problem in the southeast US. Ultimately 
pollution controls will be enacted based upon 
chemical modeling results over the region of 
interest. To support this modeling effort, Baron 
Advanced Meteorological Systems (BAMS) is 
tasked with conducting the meteorological modeling. 
A 12-month modeling period is deemed necessary 
to cover an adequate range of visibility impairment. 
Prior to investing the resources to produce 
meteorological results at 36-km and 12-km 
resolution for the full 12-month period, BAMS 
produced a series of sensitivity tests to determine 
the optimal meteorological setup for the annual 
modeling. This paper details the results from this 
sensitivity testing.  

 
 

2. DESCRIPTION OF THE METEOROLOGICAL 
MODELING APPROACH 

 
The meteorological model used in this study is 

the PSU/NCAR Mesoscale Model (MM5 version 3.6, 
Grell et al., 1994). In order to build on prior relevant 
MM5 modeling results funded by the EPA and other 
RPOs, those studies serve to establish the initial 
model configuration for this effort. Those findings 
are summarized in Olerud, 2003a. The modeling 
results indicate that MM5 is most sensitive to the 
selection of planetary boundary layer (PBL) and soil 
schemes. Therefore a series of sensitivity tests are 
recommended in Olerud, 2003b.  Given limited time 
and budget resources, a series of four sensitivity 
tests are laid out testing primarily the model 
response to the selection of PBL scheme and soil 

model. These are the tests: 
1) px_acm: Pleim-Xiu land surface 

model, asymmetric convective 
mixing PBL (Xiu and Pleim, 2000). 

2) noah_mrf:  Noah land-surface 
scheme (Chen and Dudhi, 2001) 
with the medium range forecast 
(mrf) PBL (Hong and Pan, 1996).  

3) multi_blkdr:  Multi-layer soil 
scheme with Blackadar PBL and 
Zilitinkevich thermal roughness 
length. 

4) noah_eta-my:  Noah land-surface 
scheme with the ETA Mellor-
Yamada PBL (IMVDIF=0).  

 
 
The common options for all sensitivity tests 

include Kain-Fritsch 2 cumulus parameterization 
(Kain and Fritsch, 1993; Kain, 2002), mixed phase 
(Reisner 1) microphysics (Reisner et al, 1998), and 
Rapid Radiative Transfer Model (RRTM) radiation 
(Mlawer et al, 1997). The runs are made with 
analysis nudging coefficients set as follows (36-km 
and 12-km resolutions): 

 
Winds (aloft):   2.5E-4,1.0E-4, 
Winds (surface):  2.5E-4,1.0E-4, 
Temp (aloft):  2.5E-4,1.0E-4,  
Temp (surface):  0,0 
Moisture (aloft):  1.0E-5,1.0E-5 
Moisture (surface): 0,0 
 
 Note that the use of the ETA M-Y pbl scheme 

necessitates moist vertical diffusion being turned off. 
Figure 1 shows the 36-km and 12-km modeling 
domains. The runs are executed in 2-way mode with 
feedback turned off. The four sensitivity runs are 
executed for three separate episodes listed below: 

 
 
Episode 1:  Jan 2-21, 2002 
Episode 2:  Jul 13-28, 2001 
Episode 3:  Jul 13-22, 1999. 
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Each episode is preceded by a spin-up period 

(7, 7, and 4 days, respectively) that will not be 
discussed in this report. The runs are made in 5.5-
day segments, each starting at 00 UTC, with the 
first 12 hours of each segment serving as spin-up.  
 

 
3. EVALUATION APPROACH 

 
 

It is common in the air quality community to use 
surface statistics of the base meteorological 
variables as the dominant metrics to determine 
acceptable model performance. Often statistics for 
only temperature, mixing ratio and wind speed are 
calculated. Obviously it is important for the model to 
accurately represent these variables, but there are 
additional variables that also become important 
when one considers that the results will be used to 
improve visibility. As such we have added cloud 
cover, relative humidity, and precipitation to the 
performance suite. While we calculate metrics 
separately for wind direction and wind speed, we 
also calculate the mean error vector as perhaps the 
single best metric to quantify overall wind 
performance.  

 
Recognizing that qualitative analyses of the 

model output are as important as standard 
quantitative analyses, we enable the sys tematic 
visualization of model fields with observations 
overlaid whenever possible. To do this we process 
the MM5 output through EPA’s MCIP2 program. 
MCIP2 transforms the data into NetCDF format 
while also calculating a few fields (e.g. low, middle, 
and high CFRAC) that are not readily available in 
the raw MM5 output. MCIP2 also interpolates 
temperature and wind speed to observation height 
(1.5m and 10m, respectively) for more accurate 
evaluation. Even though MCIP2 outputs a total 
cloud fraction, CMAQ uses this quantity to estimate 
optical depth. Accordingly its value can be markedly 
different than what meteorologists typically regard 
as cloud fraction. To make things as consistent as 
possible between the model and observations, the 
cloud fractions presented in this report represent the 
maximum of the low, middle, and high cloud 
fractions. We also use MCIP2 to cull a minimum of 
six cells about the domain periphery to minimize 
edge effects. The reduced domain precisely 
matches the domain used in the air quality 
modeling. The 36-km analysis domain thus contains 
148 columns, 112 rows, and 34 layers. The 12-km 
analysis domain covers 168 columns, 177 rows, and 
34 layers. 

 
The observations used for statistics come 

primarily from UCAR’s ds472.0 (TDL) archive 
(http://dss.ucar.edu/datasets/ds472.0/). These data 

are quality controlled and converted to NetCDF 
format, thus allowing the data to be visualized on 
the model fields via PAVE 
(http://www.cep.unc.edu/empd/EDSS/pave_doc/ind
ex.shtml). Unfortunately the precipitation values in 
this dataset are not reliable, so we calculate 
precipitation statistics based on the 24-h gridded 
accumulations available from the Climate Prediction 
Center  (CPC) 
(http://www.cpc.ncep.noaa.gov/products/precip/realt
ime/retro.html). These fields, originally at 0.25- 
degree resolution, undergo grid transformation to 
match our 36-km and 12-km domains. Since the 
CPC analyses are derived primarily from rain 
gauges, the statistics are only calculated over cells 
that MM5 deems to be land.  

 
For aloft analyses we process standard 

sounding observations from the NCEP ds353.4 
archive (http://dss.ucar.edu/datasets/ds353.4/). 
These observations are quality controlled and used 
to produce model/observation skewT sounding plots 
for selected sites. Additionally we integrate the 
observations into sigma levels that match the MM5 
specifications, after which we can statistically 
analyze performance at sigma levels 9, 17, and 22 
(~500m, ~1600m, ~3400m, respectively). 
Qualitative profiler plots showing model/observed 
hourly winds are also created based upon the data 
stored at the Forecast Systems Lab 
(http://www.profiler.noaa.gov/jsp/). These results, 
along with much more, will not be presented here. 
The reader is referred to the VISTAS meteorological 
website 
(http://www.baronams.com/projects/VISTAS/) for 
additional evaluation details and results.  

 
The number of analysis plots available on the 

above website is truly daunting. To aid in performing 
cross-sensitivity analyses, data are summarized by 
averaging over four hours (7-10 UTC or 18-21 UTC) 
or over an entire day. The resultant PAVE plots are 
arranged in a 4-panel presentation allowing quick 
qualitative comparison between sensitivities. For 
statistical comparison we have created cross-
sensitivity time series plots of key model statistics, 
namely bias, error, and index of agreement.  

 
Our statistical analyses involve additional 

parsing of the data. Figure 2 shows the observing 
sites color-coded by RPO. Statistics are calculated 
and stored at each observing site, and we routinely 
aggregate these results to produce statistical time 
series plots and tables for every appropriate RPO 
region. This approach also enables us to produce 
station-specific statistical quantities that can be 
plotted in a similar manner to Figure 2. The VISTAS 
web page even shows an animation of how these 
quantities change throughout an episode-composite 
day. The results shown in this document focus on 
statistics aggregated only over the VISTAS portion 
of the 12-km domain. 



 
  
 

4. RESULTS 
 
The initial results for the px_acm run for 

episode 1 were quite discouraging. The run showed 
a significant cold bias over much of the eastern US, 
including the VISTAS region as illustrated in figure 
3. While mixing ratio, clouds, precipitation, and 
winds were modeled reasonable well, the large cold 
bias was unexpected based on prior findings from 
other RPO’s and the EPA. Note in figure 3 that the 
first couple of days showed very little temperature 
bias, but the bias increased as the mean 
temperature rose. After much investigation it 
became apparent that the deep soil temperature 
was initiated during an extreme cold event in the 
eastern US. Since the model soil temperatures and 
moisture were passed from one model segment to 
another via the interppx preprocessor, the cold soil 
acted as a continuous drag on the atmosphere that 
the model physics could never quite overcome.  

 
The bias problem is significantly reduced by 

simply running each model segment independently, 
thus limiting the cold drag to actual cold conditions. 
Figure 4 shows the statistical time series for this 
new case, dubbed px_acm2. The summer episodes 
do not suffer from this cold bias initialization effect. 
For the cross-sensitivity analyses that follow, 
therefore, px_acm2 will replace px_acm only for 
episode 1.  

 
Figure 5 shows the daytime PBL heights for 

January 10, 2002 at 12-km resolution over the 
VISTAS region. It should be noted that the 
noah_eta-my PBL heights can erroneously become 
negative over small spatial areas; we set all such 
negative values to zero before averaging. Due to 
the small areal extent of these negative PBL values, 
we do not anticipate any qualitative assessments to 
be affected by those artifacts. The January 10, 2002 
PBL heights are rather typical of winter PBL heights. 
The noah_mrf heights are significantly higher and 
smoother than those in the other sensitivities. 
Generally speaking, the noah_eta-my daytime PBL 
heights are lower than they are in the other 
sensitivity runs. The px_acm2 heights tend to be 
more in the middle of those extremes, though they 
also “bottom out” more than the other runs.  

 
Figure 6 shows the cross-sensitivity daytime 

precipitation plot for this same day. The low PBL 
heights in the px_acm2 run are closely correlated to 
precipitation in the Ohio Valley, while melting snow 
and clouds (figure 7) might inhibit mixing over the 
northern Mid-Atlantic States.  

 
Figure 8 shows the daily average temperature 

for this same day. Note that the px_acm2 case is 
generally warmer than the other cases, while the 

noah_eta-my run is the coldest. Figure 9 shows that 
for daily averaged mixing ratio the patterns are very 
similar for all runs. The combination of warmer 
daytime temperatures and similar mixing ratios 
results in lower daytime relative humidity for the 
px_acm2 case compared with the other sensitivity 
runs (figure 10). Finally, figure 11 shows that the 
daytime wind speeds are similar in all cases.  

 
Traditionally nighttime PBL heights have not 

been considered very important for air quality 
modeling, but visibility/particulate modeling has 
changed that paradigm. Figure 12 shows the 
nighttime (07-10 UTC) PBL heights for January 10, 
2002. Notice that the px_acm2 produces lower PBL 
heights than the rest of the sensitivity cases do, thus 
trapping surface-based emissions in a smaller 
volume of air than would occur in another MM5 
configuration. The noah_mrf run again produces the 
highest PBL heights at night, while the multi_blkdr 
and noah_eta-my runs are somewhere in the 
middle.  

 
Nighttime cloud cover is shown in figure 13. 

The most striking observation from this figure is the 
cloud deck over Tennessee in the noah_eta-my run 
that does not exist to the same extent in the other 
sensitivity runs.  

 
Figure 14 shows the nighttime relative humidity 

plot. One might expect that the px_acm2 case 
would show the highest relative humidity, given the 
low PBL heights as indicated by figure 12. The 
opposite is actually the case. The warmer 
temperatures in this run counteract the increased 
stability such that the relative humidity values are 
the lowest of all the runs. The noah_eta-my run 
easily exhibits the highest relative humidity.  

 
 Figure 15 shows the nighttime wind speed. 

Speeds are lowest in the noah_eta-my run, followed 
by px_acm2, noah_mrf, and multi_blkdr. In fact, the 
latter two cases seem to show an inappropriate 
diurnal pattern in that their nighttime wind speeds 
are higher than their daytime wind speeds (figure 
12).  

 
Many of the same observations reported above 

are also valid for the summer episodes. To save 
time we will only show spatial 4-panel plots for PBL 
heights for a sample summer day, July 19, 2001. 
Figure 16 shows the daytime average, while figure 
17 shows the nighttime average. 

 
Now that a qualitative understanding of these 

sensitivity runs has been established, the remainder 
of this report will focus on quantitative comparisons 
between the sensitivity cases. Figure 18 shows the 
temperature statistical time series plot for episode 1. 
While the general performance of the model is very 
similar across the sensitivity runs, close examination 
reveals that the px_acm2 case performs the best. 



Figure 19 shows the corresponding plot for episode 
2. The noah_eta-my run clearly performs the worst, 
while the sensitivity runs show similar performance. 
The episode 3 plot (not shown) reveals similar 
responses.  

 
Figure 20 shows the 12-km mixing ratio 

statistical time series plot for episode 1 over the 
VISTAS region. Overall the noah_mrf case performs 
the best, followed by px_acm2. The multi_blkdr 
case is clearly the poorest performing. The 
corresponding episode 2 plot (figure 21) reveals a 
different result in that the noah_mrf case is 
negatively biased in mixing ratio. This weakness 
presumably stems from dry air being mixed down 
from aloft as the PBL becomes too high. The other 
cases are relatively similar. The negative mixing 
ratio bias is also evident for noah_mrf in episode 3 
(not shown).  

 
The wind direction plot for episode 1 is shown 

in figure 22. The direction bias and error plots show 
similar performance among the sensitivity cases, 
but the magnitude of the error vector plot (bottom 
panel) shows that the noah_eta-my is the best 
performing run, especially at night. The px_acm2 
run is generally second best. Figure 23 shows that 
similar results are seen in episode 2, as well as in 
episode 3 (not shown).  

 
The cloud cover statistical plots (figures 24-25) 

show very little difference in performance among the 
sensitivity runs. Figure 26 reveals that relative 
humidity for episode 1 is best modeled by either 
px_acm2 or noah-mrf, with the multi_blkdr case 
performing the worst. The episode 2 plot (figure 27) 
shows a strong diurnal signature with the sensitivity 
runs generally being negatively biased at night and 
positively biased during the day. The diurnal 
signature is interestingly the weakest for the 
noah_eta-my run, leading to that sensitivity possibly 
performing the best for this quantity. The episode 3 
plot (not shown) has the noah_eta-my run 
displaying the poorest performance, no doubt due to 
its negative temperature bias.  

 
Figure 28 shows the precipitation statistics for 

the full 12-km grid for episode 1. The bias blip on 
January 10 resulted from there being very few grid 
cells that actually observed measurable precipitation 
on that day. Sensitivity px_acm2 clearly outperforms 
the other cases for this episode. Figure 29 shows 
the corresponding plot for episode 2. Sensitivity 
noah_eta-my seems to be relatively unbiased, while 
the other sensitivity runs show a slight low bias. 
Nevertheless the skill plots show little difference in 
performance among the runs. The px_acm case 
appears to show slightly better results than do the 
other runs. Similar results are found for episode 3 
(not shown).  

 
Figure 30 is designed to show which sensitivity 

case statistically performs the best at each valid 
observation site. This particular image represents a 
composite of 1.5m temperatures for all hours, with 
absolute error being the defining metric. Note that 
the px_acm2 run performs best for a majority of the 
sites. The noah_eta-my run appears to do quite well 
over Florida. Figure 31 shows the corresponding 
plot for episode 2. Again the px_acm case seems to 
perform best overall, though noah_eta-my again 
performs best in Florida and along the southeastern 
coastline. The results for episode 3 (not shown) 
reveal no best performing sensitivity.  

 
Figure 32 shows a similar type of plot for mixing 

ratio. The noah_mrf case appears to perform best 
for the largest number of sites, followed by the 
px_acm2 case. The episode 2 results (figure 33) 
indicate just the opposite, as the noah_eta-my or 
multi_blkdr cases seem to perform best for most of 
the sites. The episode 3 plot (not shown) is a mixed 
bag with the noah_eta-my and px_acm cases 
seemingly performing best. 

 
The corresponding series of plots for the 

magnitude of the error wind vector (figures 24-35) 
show the clear superiority of the noah_eta-my runs. 
The px_acm(2) runs perform a distant second best 
for all sensitivities. The main reason why noah_eta-
my performs so well is its ability to calm its wind 
speeds at night (figure 15) relative to the other 
model configurations.  

 
 
5. DISCUSSION 

. 
After this rather exhaustive quantitative and 

qualitative assessment of four sensitivity runs over 
three episodes, the px_acm(2) runs appear to 
perform the best overall. While statistical 
performance for px_acm(2) for certain quantities 
might be surpassed by other model configurations 
(e.g. noah_eta-my winds), it seldom performs the 
poorest of the four sensitivities tested.  

 
A few general conclusions can be drawn about 

these sensitivity tests. They are: 
 
1) PBL heights are consistently highest in 

the noah_mrf simulations, while the 
noah_eta-my runs consistently produce 
the lowest daytime PBL heights. At 
night the px_acm(2) PBL heights are 
usually lowest. 

2) Surface winds are consistently best 
represented by the noah_eta-my runs, 
in large part because that configuration 
appropriately produces the calmest 
winds at night.  

3) The px_acm2 temperatures are 
modeled better than all other 
configurations for the winter episode, 
including px_acm. The noah_eta-my 



runs consistently show the most 
extreme low temperature bias of all 
configurations for all episodes.  

4) All configurations other than noah_eta-
my exhibit similar performance in 
modeling measurable 24-h precipitation. 
The noah_eta-my runs produce more 
precipitation coverage and are generally 
slightly less skilled than the other 
sensitivities, especially for the winter 
episode.  

 
The px_acm configuration was anticipated to 

perform the best, and in many ways it has. However 
the noah_eta-my configuration is very intriguing. It 
consistently shows the best wind performance at the 
surface, despite suffering from the most severe 
negative temperature bias. In the summer it also 
appears to be the least biased in terms of 
precipitation. Its daytime PBL heights appear to be a 
little lower than reality, but there are no observations 
available to support that conjecture. Statistics that 
are calculated for layers ~500m, ~1600m, and 
3400m (not shown) reveal very little statistical 
difference aloft among the sensitivities, with the 
occasional exception of degraded performance for 
the noah_mrf runs (PBL too high?) and noah_eta-
my (PBL too low?). 

 
Still, the superior surface wind performance of 

the noah_eta-my run deserves additional attention. 
To compare the performance of this run versus 
px_acm(2), we computed composite statistics at 
various sounding locations. These statistics 
considered only the 00 UTC (or 12 UTC) data in the 
composite. A plot of this type is shown in figure 36 
for Greensboro, NC, episode 1, 00 UTC. Note that 
at the surface the wind errors are less in the 
noah_eta-my case than they are in the px_acm2 
case, but for the majority of the lower portions of the 
atmosphere the opposite occurs. The large 
temperature/dew point biases/errors in the 
noah_eta-my are expected and corroborate what is 
seen in the surface statistics. Figure 37 shows that 
for this site similar results are found in the wind 
profile for a summer episode. 

 
Given these findings, the recommended 

approach for annual MM5 modeling in support of 
VISTAS is to use the px_acm2 approach. Additional 
testing (not shown) reveals that running a px_acm2 
configuration for the summer episodes provides 
similar performance to the px_acm runs. In the 
winter px_acm2 clearly outperforms px_acm for 
episode 1, thus making it the single best option 
overall.  
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Figure 1. VISTAS 36-km/12-km MM5 modeling domain  
 
 
 

 
 

Figure 2. Surface observing network color-coded to represent Regional Planning Organization areas.  



 

 
Figure 3. Episode 1 temperature (1.5 m) statistical time series plot for the 12-km VISTAS region, 

px_acm sensitivity. The top panel shows the mean of the observations (blue) and the model (red), the 
middle plot shows the model bias (blue) and the absolute error (red), while the bottom plot shows the 

index of agreement (blue) and coefficient of determination (red). 
 
 

 
Figure 4. Episode 1 temperature (1.5 m) statistical time series plot for the 12-km VISTAS region, 

px_acm2 sensitivity. The top panel shows the mean of the observations (blue) and the model (red), the 
middle plot shows the model bias (blue) and the absolute error (red), while the bottom plot shows the 

index of agreement (blue) and coefficient of determination (red).



 

 
 

Figure 5. Daytime (18-21 UTC) average PBL heights for the 12-km VISTAS region for January 10, 2002 
are displayed. The px_acm2 sensitivity is shown in the upper left, the noah_mrf in the upper right, the 
multi_blkdr in the lower left, and the noah_eta-my in the lower right. Note that the time value (0:00:00) is 

only a placeholder and has no physical meaning. 
 
 
 

 



 
 

Figure 6. Like figure 5, except for precipitation.  



 
 

Figure 7. Like figure 5, except for cloud coverage.  
 



 
 

Figure 8. Like figure 5, except for daily average temperature. 
 



 
 

Figure 8. Like figure 5, except for daily average temperature. 
 
 
 
 
 



 
 
 
 

Figure 10. Like figure 5, except for relative humidity.  



 

 
 

Figure 11.  Like figure 5,except for wind speed. 
 



 
 

Figure 12. Nighttime (07-10 UTC) average PBL heights for the 12-km VISTAS region for January 10, 
2002 are displayed. The px_acm2 sensitivity is shown in the upper left, the noah_mrf in the upper right, 

the multi_blkdr in the lower left, and the noah_eta-my in the lower right. Note that the time value 
(0:00:00) is only a placeholder and has no physical meaning. 



 
 

Figure 13. Like figure 12, except for cloud cover. 



 
 

Figure 14. Like figure 12, except for relative humidity. 



 
 

Figure 15. Like figure 12, except for wind speed. 
 



 
 

Figure 16. Daytime (18-21 UTC) average PBL heights for the 12-km VISTAS region for July 19, 2001 
are displayed. The px_acm sensitivity is shown in the upper left, the noah_mrf in the upper right, the 

multi_blkdr in the lower left, and the noah_eta-my in the lower right. Note that the time value (0:00:00) is 
only a placeholder and has no physical meaning. 

 



 
 

Figure 17. Nighttime (07-10 UTC) average PBL heights for the 12-km VISTAS region for July 19, 2001 
are displayed. The px_acm sensitivity is shown in the upper left, the noah_mrf in the upper right, the 

multi_blkdr in the lower left, and the noah_eta-my in the lower right. Note that the time value (0:00:00) is 
only a placeholder and has no physical meaning. 



 
Figure 18. Episode 1 (Jan 2-21, 2002) cross-sensitivity statistical time series plot for temperature is 

shown. The top panel shows bias, the second panel absolute error, and the bottom panel index of 
agreement. The px_acm2 case is shown in blue, noah_mrf in red, multi_blkdr in black, and noah_eta-

my in purple.  
 
 

 
Figure 19. Episode 2 (Jul 13-28, 2002) cross-sensitivity statistical time series plot for temperature is 

shown. The top panel shows bias, the second panel absolute error, and the bottom panel index of 
agreement. The px_acm case is shown in blue, noah_mrf in red, multi_blkdr in black, and noah_eta-my 

in purple. 



 
Figure 20. Episode 1 (Jan 2-21, 2002) cross-sensitivity statistical time series plot for mixing ratio is 

shown. The top panel shows bias, the second panel absolute error, and the bottom panel index of 
agreement. The px_acm2 case is shown in blue, noah_mrf in red, multi_blkdr in black, and noah_eta-

my in purple. 
 

 
Figure 21. Episode 2 (Jul 13-28, 2002) cross-sensitivity statistical time series plot for mixing ratio is 

shown. The top panel shows bias, the second panel absolute error, and the bottom panel index of 
agreement. The px_acm case is shown in blue, noah_mrf in red, multi_blkdr in black, and noah_eta-my 

in purple. 



 
Figure 22. Episode 1 (Jan 2-21, 2002) cross-sensitivity statistical time series plot for winds is 

shown. The top panel shows wind direction bias, the second panel absolute wind direction error, and 
the bottom panel the magnitude of the error wind vector. The px_acm2 case is shown in blue, noah_mrf 

in red, multi_blkdr in black, and noah_eta-my in purple. 
 
 

 
Figure 23. Episode 2 (Jul 13-28, 2001) cross-sensitivity statistical time series plot for winds is 

shown. The top panel shows wind direction bias, the second panel absolute wind direction error, and 
the bottom panel the magnitude of the error wind vector. The px_acm case is shown in blue, noah_mrf 

in red, multi_blkdr in black, and noah_eta-my in purple. 



 
Figure 24. Episode 1 (Jan 2-21, 2002) cross-sensitivity statistical time series plot for cloud 

coverage is shown. The top panel shows bias, the second panel absolute error, and the bottom panel 
index of agreement. The px_acm2 case is shown in blue, noah_mrf in red, multi_blkdr in black, and 

noah_eta-my in purple. 
 

 
Figure 25. Episode 2 (Jul 13-28, 2001) cross-sensitivity statistical time series plot for cloud 

coverage is shown. The top panel shows bias, the second panel absolute error, and the bottom panel 
index of agreement. The px_acm case is shown in blue, noah_mrf in red, multi_blkdr in black, and 

noah_eta-my in purple. 



 
Figure 26. Episode 1 (Jan 2-21, 2002) cross-sensitivity statistical time series plot for relative 

humidity is shown. The top panel shows bias, the second panel absolute error, and the bottom panel 
index of agreement. The px_acm2 case is shown in blue, noah_mrf in red, multi_blkdr in black, and 

noah_eta-my in purple. 
 

 
Figure 27. Episode 2 (Jul 13-28, 2001) cross-sensitivity statistical time series plot for relative 

humidity is shown. The top panel shows bias, the second panel absolute error, and the bottom panel 
index of agreement. The px_acm case is shown in blue, noah_mrf in red, multi_blkdr in black, and 

noah_eta-my in purple. 



 
Figure 28. Episode 1 (Jan 2-21, 2002) cross-sensitivity statistical time series plot for 24-h 

measurable precipitation is shown. The top panel shows bias, the second panel accuracy, and the 
bottom panel equitable threat score. The px_acm2 case is shown in blue, noah_mrf in red, multi_blkdr 

in black, and noah_eta-my in purple. 
 

 
Figure 29. Episode 2 (Jul 13-28, 2001) cross-sensitivity statistical time series plot for 24-h 

measurable precipitation is shown. The top panel shows bias, the second panel accuracy, and the 
bottom panel equitable threat score. The px_acm case is shown in blue, noah_mrf in red, multi_blkdr in 

black, and noah_eta-my in purple. 



 

 
 

 
Figure 30. Episode 1 (Jan 2-21, 2002) cross-sensitivity 1.5m temperature absolute error 

comparison plot is shown. Stations for which px_acm2 show the smallest composite error are plotted in 
blue, noah_mrf in green, multi_blkdr in yellow, and noah_eta-my in red. The date/time/max/min 

information at the bottom of the plot serves only as placeholders and should be ignored. 
 



 
 

 
Figure 31. Episode 2 (Jul 13-28, 2002) cross-sensitivity 1.5m temperature absolute error 

comparison plot is shown. Stations for which px_acm2 show the smallest composite error are plotted in 
blue, noah_mrf in green, multi_blkdr in yellow, and noah_eta-my in red. The date/time/max/min 

information at the bottom of the plot serves only as placeholders and should be ignored. 



 
 

 
Figure 32. Episode 1 (Jan 2-21, 2002) cross-sensitivity mixing ratio absolute error comparison plot 

is shown. Stations for which px_acm2 show the smallest composite error are plotted in blue, noah_mrf 
in green, multi_blkdr in yellow, and noah_eta-my in red. The date/time/max/min information at the 

bottom of the plot serves only as placeholders and should be ignored. 



 
 

 
Figure 33. Episode 2 (Jul 13-28, 2001) cross-sensitivity mixing ratio absolute error comparison plot 

is shown. Stations for which px_acm2 show the smallest composite error are plotted in blue, noah_mrf 
in green, multi_blkdr in yellow, and noah_eta-my in red. The date/time/max/min information at the 

bottom of the plot serves only as placeholders and should be ignored. 
 



 
 

 
Figure 34. Episode 1 (Jan 2-21, 2002) cross-sensitivity error vector magnitude comparison plot is 

shown. Stations for which px_acm2 show the smallest composite error are plotted in blue, noah_mrf in 
green, multi_blkdr in yellow, and noah_eta-my in red. The date/time/max/min information at the bottom 

of the plot serves only as placeholders and should be ignored. 
 
 
 



 
 

 
Figure 35. Episode 2 (Jul 13-28, 2001) cross-sensitivity error vector magnitude comparison plot is 

shown. Stations for which px_acm2 show the smallest composite error are plotted in blue, noah_mrf in 
green, multi_blkdr in yellow, and noah_eta-my in red. The date/time/max/min information at the bottom 

of the plot serves only as placeholders and should be ignored. 



 
Figure 36. Episode 1 (Jan 2-21, 2002) composite vertical statistics for all 00 UTC times for 

Greensboro, NC are shown. The magnitude of the error vector is plotted in the leftmost panel, followed 
by temperature bias and error, then dew point bias and error. Blue represents the px_acm2 case, while 

dashed red shows the noah_eta-my results. 
 

 
Figure 37. Episode 2 (Jul 13-28, 2001) composite vertical statistics for all 00 UTC times for 

Greensboro, NC are shown. The magnitude of the error vector is plotted in the leftmost panel, followed 
by temperature bias and error, then dew point bias and error. Blue represents the px_acm2 case, while 

dashed red shows the noah_eta-my results.
 


