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Abstract

A 4-dimensional ensemble Kalman filter method
(4DEnKF), which adapts ensemble Kalman filtering
to the assimilation of observations that are asyn-
chronous with the analysis cycle, is discussed. In
the ideal case of linear dynamics between consecu-
tive analyses, the algorithm is equivalent to Kalman
filtering assimilation at each observation time. Tests
of 4DEnKF on the Lorenz 40 variable model are
conducted.

1. INTRODUCTION

In ensemble Kalman filtering, a set of background
trajectories is integrated by the dynamical model,
and used to estimate the background covariance
matrix. Numerical experiments have shown that en-
semble Kalman filters (EnKF, e.g., Evensen 1994;
Evensen and van Leewen 1996, Houtekamer and
Mitchell 1998, 2001; Hamill and Snyder 2000) are
efficient ways to carry out data assimilation from
simple models to state-of-the-art operational nu-
merical prediction models. The ensemble square-
root Kalman filter approach (Tippett et al. 2002;
Bishop et al. 2001; Anderson 2001; Whitaker and
Hamill 2002; Ott et al. 2002) has attracted much re-
cent attention.

A further advantage of the ensemble square
root Kalman filter is that it allows asynchrononous
observations to be naturally assimilated. The Four-
Dimensional Ensemble Kalman Filter (4DEnKF),
first proposed in Hunt et al. (2003), is a practical
way of unifying the ensemble Kalman filter and the
four-dimensional variational approach. Instead of
treating observations as if they occur only at as-
similation times, we can take observations times
into account in a natural way, even if they are dif-
ferent from the assimilation times. The observa-
tional increments are propagated at intermediate
time steps using the ensemble of background fore-
casts. This extension of the EnKF to a 4DEnKF can
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be considered analogous to the extension of the
three-dimensional variational technique (3D-Var) to
the four dimensional variational technique (4D-Var).
The idea is to infer the linearized model dynam-
ics from the ensemble instead of the tangent-linear
map, as done in conventional 4D-Var schemes.
Furthermore, in the case of linear dynamics, our
technique is equivalent to instantaneous assimila-
tion of measured data.

2. ENSEMBLE KALMAN FILTERS

To set notation, we recall the EnKF method when
the observations are synchronous with the analysis.
Let

ẋm = Gm(x1, . . . , xM ) (1)

for m = 1, . . . , M be a continuous dynamical system
representing the background vector field, where x =
(x1, . . . , xM ). The Ensemble Kalman Filter is de-
signed to track the evolution, under this dynamical
system, of an M-dimensional Gaussian distribution
centered at x(t) with covariance matrix P(t).

In the implementation of (Ott et al. 2003; Tippett
et al. 2003), k + 1 trajectories of (1) are followed
starting from initial conditions xa(1), . . . , xa(k+1) over
a time interval [ta, tb]. Since the system is typically
high-dimensional, assume that k + 1 ≤ M. The k +
1 initial conditions are chosen so that their sample
mean and sample covariance are x(ta) and P(ta),
respectively. After running the system over the time
interval, we denote the trajectory points at the end
of the interval by xb(1), . . . , xb(k+1), and compute a
new sample mean xb and sample covariance Pb

from these k + 1 vectors. Define the mean vector

xb =
1

k + 1

k+1

∑
i=1

xb(i)

and
δxb(i) = xb(i) − xb.

Set the matrix

X b =
1√
k

[δxb(1)| · · · |δxb(k+1)]



to get the M × M covariance matrix

Pb = X b(X b)T . (2)

Since the sum of the columns of X b is zero, the
maximum possible rank of Pb is k .

In the Ensemble Kalman Filter, data assimila-
tion is done using observations assumed to have
been taken at time tb. The observations are used
to replace the dynamics-generated pair xb, Pb at
time tb with a revised pair xa, Pa that are used as
x(t ′a) and P(t ′a) on the next time interval [t ′a, t ′b] where
t ′a ≡ tb.

In the typical case the rank of Pb is k . Then
the column space S of Pb is k-dimensional, and
equals the row space, since Pb is a symmetric ma-
trix. The orthonormal eigenvectors u(1), . . . , u(k) of
Pb that correspond to nonzero eigenvalues span
this space. Since the variation of the ensemble
members occurs in the directions spanning the vec-
tor space S, we look there for corrections to xb in
the data analysis step. Set Q = [u(1)| · · · |u(k)] to be
the M × k matrix whose columns form a basis of S.
To represent Pb in this basis, define the k×k matrix
P̂b = QT PbQ.

The data analysis step for EnSQKF uses obser-
vations (y1, . . . , yl ) measured at assimilation time tb
that we assume are linearly related to the dynami-
cal state x by y = Hx , where H is the observation
operator. This assumption simplifies the following
discussion, but the method can be easily extended
to the case of a nonlinear observation operator. De-
note by R the error covariance matrix of the obser-
vations. Define Ĥ = HQ to restrict the action of H to
the subspace S. The formula for the solution to re-
cursive weighted least squares with current solution
xb and error covariance matrix P̂b is

P̂a = P̂b(I + ĤT R−1ĤP̂b)−1

∆x̂ = P̂aĤT R−1(y − Hxb)

xa = xb + Q∆x̂ (3)

The corrected most likely solution is xa, with error
covariance matrix P̂a.

To finish the step and prepare for a new step on
the next time interval, we must produce a new en-
semble of k +1 initial conditions xa(1), . . . , xa(k+1) that
have the analysis mean xa and analysis covariance
matrix P̂a. This can be done in many ways. One
approach (Ott et al. 2002) is to define the positive
square root matrix

Y = {I + (X̂ b)T (P̂b)−1(P̂a − P̂b)(P̂b)−1X̂ b}1/ 2, (4)

where X̂ b = QT X b. Define the matrix X a = X bY

and

X a =
1√
k

[δxa(1)| · · · |δxa(k+1)].

Next define the vectors

xa(i) = δxa(i) + xa.

It can be checked that

xa =
1

k + 1

k+1

∑
i=1

xa(i)

Pa = X a(X a)T (5)

satisfy (3).

3. ASSIMILATION OF ASYNCHRONOUS DATA

The above description assumes that the data to be
assimilated was observed at the assimilation time
tb. The 4DEnKF method adapts EnKF to handle
asynchronous observations, those that have oc-
curred at non-assimilation times. The key idea is
to mathematically treat the observation as a slightly
modified observation of the current state at the as-
similation time. The method of (Hunt et al. 2003)
consists of using the dynamics contained in the en-
semble members to carry this out. In this way we
avoid the need to linearize the original equations
of motion, as is necessary in standard implementa-
tions of 4D-Var.

Notice that Eqs. (3,4,5) result in analysis vec-
tors xa(1), . . . , xa(k+1) that lie in the space spanned
by the background ensemble xb(1), . . . , xb(k+1). Con-
sider model states of the form

xb =
k+1

∑
i=1

wixb(i). (6)

The goal of the analysis is to find the appropriate set
of weights wa(j)

1 , . . . , wa(j)
k+1 for each analysis vector

xa(j).
Now let y = h(x) be a particular observation

made at time tc 6= tb. We associate to the state xb in
(6) at time tb a corresponding state

xc =
k+1

∑
i=1

wixc(i), (7)

where xc(i) is the state of the i th ensemble solution
at time tc . We assign the observation h(xc) at time tc
to the state xb given by (6). Eqn. (7) was utilized by
(Bishop et al. 2001) and (Majumdar et al. 2002) to
predict the forecast effects of changes in the anal-
ysis error. Here, we use this property to propagate
the dynamical information within the analysis time
window.



It remains to express the asynchronous obser-
vations h(xc) as functions of xb, the state at the
analysis time. This functional relationship is needed
to apply the standard recursive least squares equa-
tion as in (3). Let

Eb = [xb(1)| · · · |xb(k+1)]

and
Ec = [xc(1)| · · · |xc(k+1)]

be the matrices whose columns are the ensem-
ble members at the times tb and tc , respectively.
Then (6) and (7) say that Ebw = xb and Ecw = xc ,
respectively, where w = [w1, . . . , wk+1]T . The or-
thogonal projection to the column span of Eb is
given by the matrix Eb(ET

b Eb)−1ET
b , meaning that

the coefficients w in (6) can be defined by w =
(ET

b Eb)−1ET
b xb. The linear combination (7) is xc =

Ecw = Ec(ET
b Eb)−1ET

b xb. Therefore the observation
h(xc), expressed as a function of the background
state xb at the time of assimilation, is

h(Ecw) = h(Ec(ET
b Eb)−1ET

b xb). (8)

The latter expression can be substituted directly into
the ensemble filter equations (3). For example, a
set of observations denoted by the matrix H and
time-stamped at tc can be represented at time tb by
the matrix HEc(ET

b Eb)−1ET
b . Therefore the innova-

tion y−Hxc learned from the observations is treated
instead as y−HEc(ET

b Eb)−1ET
b xb in the assimilation

step.
This technique is equivalent to the computation

of the forcing of the observational increments at the
correct time in 4D-Var; however, it propagates the
increments forward or backward in time without the
need for the linear tangent model or its adjoint. We
point out that a more efficient implementation than
(8) is possible using the expression h(Ecw), but
using analysis equations that solve directly for the
weight vector w , similar to the Ensemble Transform
Kalman Filter (Bishop et al. 2001).

Multiple observations are handled in the same
manner. Assume the observation matrix is H =
(hT

1 | · · · |hT
l )T , where the observation row vectors

h1, . . . , hl correspond to times tc1 , . . . , tcl , respec-
tively. Then the observation matrix H in (3) is re-
placed with the matrix







h1Ec1

...
hlEcl






(ET

b Eb)−1ET
b . (9)

In addition, it should be noted that the tci can be
smaller or larger than tb, allowing for observations

to be used at their correct observational time even
after the nominal analysis time. In the case of linear
system dynamics, the 4DEnKF technique is equiv-
alent to assimilating data at the time it is observed.

4. COMPUTER EXPERIMENTS

The Lorenz model is a manageable spatio-temporal
dynamical model that is useful for illustrating our re-
sults. Consider the vector field defined by

ẋm = (xm+1 − xm−2)xm−1 − xm + F (10)

for m = 1, . . . , M and with periodic boundary condi-
tions x1 = xM+1. Setting the forcing parameter F = 8
and the system dimension M = 40, the attractor of
the so-called Lorenz40 system has information di-
mension approximately 27.1 (Lorenz, 1998).

We start with a long integration of the model,
creating a long background trajectory x∗, to be con-
sidered as the ”true” trajectory. The average root
mean square deviation from the mean is approxi-
mately 3.61 for the true trajectory. We produce arti-
ficial noisy observations at each time interval ∆t by
adding uncorrelated Gaussian noise with variance
1 to the true state at each spatial location.
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FIG. 1: Root mean square error of proposed 4DEnKF
method (circles) compared to standard EnSQKF (dia-
monds) and EnSQKF with time interpolation (triangles).
Variance inflation is set at 6%. Symbols showing RMSE
= 1 actually represent values ≥ 1. RMSE is averaged
over several runs of 40,000 steps.

Figure 1 shows that if we use 4DEnKF, assimi-
lations can be skipped with little loss of accuracy in
tracking the system state. The system is advanced
in steps of size ∆t = .05, but instead of assimilating
the observations at each step, assimilation of past
data is done only every every s steps. The resulting
root mean square error (RMSE) is plotted as circles
in Figure 1 as a function of s. For s ≤ 6, it appears
that little accuracy is lost. This shows the ability



of 4DEnKF to take asynchronous observations into
account without carrying out analysis at each obser-
vation step. The fact that the circles in Fig. 2 stay
constant as s increases verifies this capability for
the Lorenz40 example. As mentioned above, it can
be shown analytically that the 4DEnKF method is
equivalent to assimilating at each observation time
in the case of linear background dynamics. This ex-
periment shows that the property can hold as well
for nonlinear dynamics, at least for small values of
s.

The RMSE of two other methods are shown
in Fig. 1 for comparison. The diamonds plotted in
Fig. 1 are the RMSE found by using EnSQKF, allow-
ing s steps of length ∆t to elapse between assim-
ilations. Only those observations occurring at the
assimilation time were used for assimilation. The
triangles refer to time-interpolation of the data since
the last assimilation. In this alternative, linear in-
terpolation of individual observations as a function
of the ensemble background state evolved by the
model is used to create an improved observation
y∆(tb) at the assimilation time. In other words, the
innovation at time tc is added instead at assimila-
tion time tb. For the Lorenz example, where the
observations are noisy states, this amounts to re-
placing the observation at time tc with y∆(tb) ≡
y(tc)+xb−xc . Assimilation is done by EnSQKF. The
idea behind this technique is widely used in opera-
tional 3D-Var systems to assimilate asynchronous
observations (e.g., Huang et al. 2002; Benjamin et
al. 2003). Our implementation provides somewhat
optimistic results for this technique, since our back-
ground error covariance matrix is not static (inde-
pendent of time) and homogeneous (independent
of location) as it is assumed in a 3D-Var. As Figure
1 shows, for the latter two methods, the accuracy
of the assimilated system state becomes consider-
ably worse compared to 4DEnKF as the steps per
assimilation s increases.

In another computer simulation we tested the
ability of 4DEnKF to assimilate a combination of
asynchronous observations from before and after
the analysis time. The Lorenz40 system is ad-
vanced in steps of size ∆t = .05, but instead of
assimilating the observations at each step, analy-
sis is done only every s steps, using observations
from (the integer part of) s/ 2 time steps before and
after the analysis time. If tb is the analysis time, ob-
servations from times tb − (∆t)[s/ 2], . . . , tb, . . . , tb +
(∆t)[s/ 2] were used, where the square bracket no-
tation is used to mean ”integer part”. As observa-
tions in this computer simulation, we used all 40
spatial state variables.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

steps per assimilation

ro
ot

 m
ea

n 
sq

ua
re

 e
rr

or

FIG. 2: Root mean square error of proposed 4DEnKF
method (circles) compared to standard EnSQKF (aster-
isks), when both pre- and post-assimilation data is used.
Six percent variance inflation is used. Symbols showing
RMSE = 1 actually represent values ≥ 1. RMSE is aver-
aged over several runs of 40,000 steps.

The root mean square error (RMSE) of the
analysis trajectory with respect to the original true
trajectory is plotted (open circles) as a function of
steps per assimilation s in Fig. 2. Also, we compare
4DEnKF to the strategy of treating the observations
at times tb − (∆t)[s/ 2], . . . , tb, . . . , tb + (∆t)[s/ 2] as if
they occurred at the assimilation time tb, that is, ig-
noring the precise timing information as frequently
done in operational forecasts (Kalnay, 2003). The
RMSE under this alternative strategy, using En-
SQKF without the 4D improvements we have out-
lined, is plotted in Fig. 2 as asterisks. Clearly, a
penalty is paid for not taking the time stamp of the
observations into account, as 4DEnKF does.

Variance inflation was used in the experiment
described above, meaning that the analysis covari-
ance matrix was artificially inflated by adding εI to
P̂a for small ε. In Figures 1 and 2, ε = 0.06 was
used for all methods. Variance inflation helps to
compensate for underestimation of the uncertainty
in the background state due to nonlinearity, limited
ensemble size, and model error.

The results in Fig. 1 show that for pre-
assimilation data, 4DEnKF is superior to straight-
forward EnKF as well as an alternative form where
observational increments were computed with the
background at the observing time, a method also
used in operational centers. The additional use
of post-assimilation observations as in Fig. 2 de-
creases the RMSE and extends the range of viable
s, steps per assimilation, to an even greater degree.

We have also achieved similar results by ap-
plying the 4DEnKF methodology to the Local En-
semble Kalman Filter (LEKF), as developed in (Ott



et al. 2003). The local approach is based on
the hypothesis that assimilation can be done on
moderate-size spatial domains and reassembled.
The 4D treatment of the asynchronous local obser-
vations can be exploited in the same way as shown
in this article.

The computational savings possible with the
4DEnKF technique arise from the ability to im-
prove the use of asynchronous observations with-
out more frequent assimilations. The extra com-
putational cost of 4DEnKF is dominated by invert-
ing the (k + 1) × (k + 1) matrix ET

b Eb in (8), which
is comparatively small if the ensemble size k + 1
is small compared to the number of state variables
M. Moreover, applying this technique in conjunction
with local domains as in LEKF allows k to be greatly
reduced in comparison with M. We will report on a
combination of the two ideas in a future publication.
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