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1. INTRODUCTION

Modern military weather forecasters rely heavily on
numerical models (Jones et al., 2002) to produce their
forecasts.  The reliability of this information is variable
such that forecasters must also consider the amount of
uncertainty inherent in the models’ information.  The
steps involved in conducting a thorough evaluation of
model uncertainty are time consuming.  Forecasters must
answer the following questions: How accurate have the
models been over the past few days?  How do the model
initializations compare to the observational data?  How
uncertain are the current model predictions?  Because
military forecasting is often done under time pressure,
the amount of uncertainty evaluation that can be
conducted is often limited.  In addition, the optimal
means to convey this information to the end user is not
well understood.  Nevertheless, the level of uncertainty
in a forecast can be a crucial factor in tactical decisions.

The design of the MUM system described below
resulted from field observations and task analyses of
operational Navy forecasters.  MUM supports the
process of uncertainty evaluation by taking on those
steps that are computationally demanding for humans.
This effort is part of a Department of Defense Multi-
disciplinary University Research Initiative (MURI) on
statistical and cognitive approaches to visualizing
uncertainty in mesoscale meteorology, and is being
conducted at the University of Washington in Seattle.

2. METHOD

Two studies were conducted to gain a better
understanding of how uncertainty evaluation is
conducted by operational Navy forecasters and how
uncertainty fits into the forecasting process.

2.1 Verbal protocol analysis

We began with a cognitive task analysis (CTA) of
operational forecasters at the Naval Pacific Meteorology
and Oceanography Facility (NPMOF), Whidbey Island,
WA.  We observed four forecasters as they produced a
Terminal Aerodrome Forecast (TAF), which is produced
every six hours and amended when necessary. Not only
is the TAF written under time pressure, but forecasters

are also responsible for simultaneous duties. They
respond to numerous requests in person and over the
phone that necessarily interrupt the forecasting process.

For this study, the forecasters were instructed to
verbalize their thoughts as they produced the TAF. We
made audio recordings of their verbalization as well as
video recordings to their computer screens. The auditory
recordings were transcribed and broken down into
individual numbered statements.  Each statement was
then coded and organized under goals.

For the most part the forecasters gathered
information, primarily numerical models from the Web,
early in the process.  One forecaster delayed information
gathering until he began to write his TAF, suggesting
that he was avoiding maintaining a large memory load
for the duration of the process. We noted that few
forecasters had a detectable stage at which they built a
complex mental model of the current atmospheric
conditions (Trafton et al., 2000). Instead, most
forecasters relied upon rule-of-thumb forecasting,
applying standardized general rules to the current
situation to derive the forecast (e.g., If a system is
coming into the coast, strong southerly winds should be
forecasted over Whidbey Island).

All forecasters made some effort to evaluate model
uncertainty and talked about specific strategies for doing
so.  These were mostly complex mental comparisons of
model output to other sources of information.
Forecasters also discussed model biases, the quality of
the initialization, and adjustments they would make to
the model prediction to arrive at their own forecast.

Although some forecasters evaluated a number of
different numerical models and compared them to
various information sources, others focused on specific
models and made only one or two comparisons.
Forecasters tended to avoid head-to-head comparisons
between models and complex quantitative evaluations.
They rarely evaluated recent model performance and we
did not observe them using either probability or
ensemble products.

2.2 Questionnaire study

Our results were confirmed in a questionnaire study
in which forecasters filled out a survey asking about
model evaluation techniques after each TAF they
produced.  They also rated model performance. We
expected to see the forecasting process altered when the
models were judged to be performing poorly.  Instead,
forecasters appeared to have a fairly set forecasting
routine, relying upon the same information sources and
evaluation techniques from one TAF to the next.



3. FINDINGS FROM THE TASK ANALYSIS

From these two studies we learned that forecasters
are concerned with model uncertainty and that they
evaluated it on every TAF we observed.  Naval
forecasters clearly believe this is an important step,
suggesting they will likely use products designed to
facilitate this effort.

Figure 1.  Example of forecaster cognitive offloading
from short-term memory (right box) to long-term
memory (left box).

Nonetheless, naval forecasters tended to avoid some
procedures.  We speculate that the avoided procedures
are likely those placing the greatest demand on working
memory.  It has long been known that working memory,
roughly synonymous with conscious level processing, is
severely limited (Miller, 1956). Moreover, working
memory capacity is functionally decreased by time
pressure (Edland & Svenson, 1993), and interruptions
(Rogers & Monsell, 1995), which are common in
military forecasting.  Tasks such as making complex
mental comparisons, creating mental models of the
current atmospheric conditions, and deciding which
evaluation techniques are appropriate to a specific
forecast draw heavily on this limited resource.

The forecasters we observed tended to avoid such
tasks and relied instead upon approaches that tapped
long-term memory (Figure 1).  These are the solutions
that can be memorized and applied with little adjustment
to the current situation, such as rules of thumb or set
routines.  Although this approach alleviates working
memory load, it may be at the cost of flexibility and
thoroughness.

From the analysis of coded statements and in-depth
review of the tools and information sources used by the
forecasters we observed, we noted the following issues:

Forecasters are aware of model uncertainty and they
attempt to estimate it by synoptic scale pattern
matching and comparison of specific values.

Uncertainty evaluation is streamlined in response to
time pressure and experience level.

Their primary information sources are numerical
models. They receive most information via the web
and rely on a small subset of available information.
Despite this limited data set, they spend significant
time navigating between info sources.

They have limited tools available to assess model
uncertainty.

They are unsure how and when to use ensemble and
other types of uncertainty products.

4. THE MUM SYSTEM ARCHITECTURE

A key objective of the UW MURI is to develop and
test new visualizations of uncertainty information based
on the UW Short Range Ensemble Forecast (SREF),
Mass & Grimmit (2002).  We felt that merely creating
new products and then expecting overloaded forecasters
to use them would yield disappointing results.  What is
needed is a framework that addresses all aspects of
uncertainty that typically confront forecasters.  They
need a computer interface that presents only the essential
information, yet allows for knowledge discovery when
time or operational necessity requires it.  We have
developed the MUM as a system that achieves these
objectives while addressing the issues and constraints
noted in our task analysis.

The severe time constraints that naval forecasters
work under are expected to increase due to current
manning reductions and future regional forecasting (i.e.,
forecasts made for multiple remote sites).  Using a
monitoring paradigm, the MUM provides tools for quick
assessment of model uncertainty.  Forecasters can then
decide the best use of their limited time.  A forecaster
wants to use, without correction, the model parameters
which have performed well in the past and thus have
limited uncertainty in the future.  Other parameters may
need further investigation through the use of personal
knowledge to correct for uncertainty in a model forecast.
Ideally, a forecaster should have automation tools that
allow the selection of the best performing model (or
ensemble member) plus the ability to modify model
fields prior to forecast generation.

The MUM system is based on Java Server Page
(JSP) and servlet technology.  It is hosted at the Applied
Physics Laboratory (APL-UW) on a Linux system
running a Tomcat server.  The model data used in the
system comes from the UW SREF.  This includes the
global fields used for the SREF boundary conditions and
the individual ensemble members of the SREF.  This
data is stored and archived on the APL-UW server.



Figure 2 outlines the data flow and software models
that make up the MUM.  Processing for model
verification is routinely run in the background and
maintained in a file that is called when the MUM JSP is
downloaded to a user’s browser.  During the download
of the interface page, a MUM model grabs the
information that provides the color-coding of the
stoplight graphics.

Figure 2.  MUM architecture and data flow

 5. MUM HUMAN-COMPUTER INTERACTION

While the MUM interface is still a work in progress,
it currently produces model uncertainty assessments in
real-time.  The interface presents information in a past-
present-future framework on the left, bottom center, and
right control panels.  As users select information links, a
visualized representation is displayed in the center
window.

Based on our task analysis, the forecasters’ highest
percentage of time was spent reviewing model
initialization.  Therefore, the default presentation is the
current model initialization field overlaid on top of the
most current satellite picture.  The MUM currently pulls
t he se  p roduc t s  f rom the  UW s i t e :
http://www.atmos.washington.edu/~bnewkirk/desc.html

Figure 3 shows the default view that is displayed
inside a web browser after the selection of the MUM
link: http://isis.apl.washington.edu/monitor/monitor.jsp.
Clicking on the image can enlarge the default picture.  In
addition to the model field, the 24-hour wind forecast is
shown compared to verification observations, along with
the difference between forecast and observed pressure
for that location.  This assemblage of information
provides the forecaster with the assessment of both the
performance of the past model forecast and its
initialization compared to the satellite picture.  Further
iterations of the MUM will include additional

initialization assessment tools such as an interpolated
model versus observation table for selected locations.

Figure 3.  MUM with initialization information

On the left of the screen is model performance
information.  For the initial assessment, we use a
stoplight paradigm, which is familiar to military
personnel.  These graphics provide pertinent information
on the past performance of global models (upper section)
and ensemble members (lower section). Models are
judged based on their RMS error (Root Mean Squared
Error) over a window of time in the past. RMSE is
calculated by comparing a forecast against the
corresponding zero-hour analysis.  Comparing the most
recent error result against the trend of error in the past
generates the stoplight color. Green colored stoplights
indicate low error, or good performance. Yellow
indicates intermediate performance, and red indicates
poor performance.

On the right side of the screen is uncertainty
information about the future.  As with the model
performance section on the left, the top-level
information is displayed with stoplight graphics, but
these graphics are derived for a point (initially set at
NAS Whidbey, KNUW).  However, the model
performance stoplights are derived over a geographic
area (from global scale down to mesoscale).

Current research on ensembles has shown a
relationship between the skill of the model prediction
and the spread of the answers each member gives for a
particular parameter.  We use this spread relationship as
a proxy for forecast uncertainty.  The uncertainty
stoplight table contains a number of stoplight graphics,
the color of which attempts to classify the uncertainty of
the model prediction. Green indicates less uncertainty or
an indication of higher accuracy, while yellow indicates
intermediate uncertainty. Red stoplights indicate high
uncertainty for the corresponding combination of
forecast hour and parameter. As the spread is a property



of the ensemble as a whole, uncertainty is not provided
for individual ensemble members.

Ensemble spread directly corresponds to the
stoplight color. If the ensemble spread is in the top
1/12th (91.66% and above) of all past spread values, the
stoplight is red. If the spread lies between the top 2/12ths
and 1/12th (83.33% to 91.66%) the stoplight is yellow.
All other values are green.

The spread meteograms (shown in Figure 4) are new
visualizations currently being tested in the MUM.  These
meteograms display information about MM5 ensemble
performance for a single geographic location. Ensemble
prediction data for a single parameter is shown over a
time period of four days, where the most recent 00 hour
prediction lies at the center, marked by a bright vertical
line. The ensemble data is shown as a shaded region
spanned by the minimum and maximum predicted value
at the given time.

Data in the past 48 hours is a composite of three
predictions; the -48 hour data is pulled from the 24-hour
prediction initialized 72 hours previous, the -45 hour to -
24 hour data (inclusive) is drawn from the prediction
initialized 48 hours before the current 00 line, and the -
21 hour to 0-hour values are from the ensemble forecast
initialized at -24 hours. Future predictions are all from
the forecast initialized at 00 hours, although the 0-hour
value is not available for all parameters and may appear
as a discontinuity.

In addition to ensemble spread, observation data
appears in the left portion of the meteogram as a red-
orange data plot. This is pulled from the METAR for the
nearest observing station.  In a well-tuned ensemble
system this observation should typically fall within the
range of the spread.  If the observation routinely falls
outside the spread, the forecaster can more easily
pinpoint biases in the ensemble system.

Figure 4.  MUM with ensemble spread meteogram

Additional tools and visualizations will be added to
the MUM.  We are also investigating techniques for
interacting with the probability distribution information
that can be derived from an ensemble system.  Navy
operators may be interested in knowing the forecasted
range of a particular parameter with a 99% certainty, or
the value of the top two most probable forecast
scenarios.  The MUM will allow the user to interact with
this type of probabilistic information.

6. CONCLUSION

We have developed a software framework and a
prototype interface that assemble, process, and visualize
uncertainty information for weather forecasters.  This
system is based on extensive observation and analysis of
navy forecasters in their operational environment.  The
MUM will be used to test methods of presentation and
user interactivity toward the goal of improving forecast
quality, timeliness, and usefulness.  Most importantly,
we hope the MUM will encourage forecasters to use
probabilistic information in new and innovative ways.
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