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1. Verification of Discrete Phenomena 
 
Verification is a critical 

component of the development and use 
of forecasting systems. Ideally, 
verification should play a role in 
monitoring the quality of forecasts, 
provide feedback to developers and 
forecasters to help improve forecasts, 
and provide meaningful information to 
forecast users to apply in their decision-
making processes. In addition, as noted 
by Mahoney et al. (2002) forecast 
verification can help to identify 
differences among forecasts. Finally, 
because forecast quality is intimately 
related to forecast value, albeit through 
relationships that are sometimes quite 
complex, verification has an important 
role to play in assessments of the value 
of particular types of forecasts (Murphy 
1993). 

In recent years forecasting 
approaches have become more complex 
and have been applied on finer scales. 
Unfortunately, traditional approaches for 
the verification of spatial forecasts, 
including QPFs and convective 
forecasts, are inadequate to meet current 
needs. Typically, verification techniques 

have been based on simple grid overlays 
in which the forecast grid is matched to 
an observation grid or set of observation 
points. From these overlays, counts of 
forecast/observation (Yes/No) pairs are 
computed, to complete the standard 2x2 
contingency table. The counts in this 
table can be used to compute a variety of 
verification measures and skill scores, 
such as the Probability of Detection 
(POD), False Alarm Ratio (FAR), 
Critical Success Index (CSI), and 
Equitable Threat Score (ETS) (e.g., 
Doswell et al. 1990; Wilks 1995). An 
important concern associated with use of 
this approach is that it is difficult to 
diagnose particular errors in the 
forecasts to provide meaningful 
information that can be used to improve 
the forecasts or provide guidance to 
forecast users.  

 Figure 1 illustrates some of the 
difficulties associated with diagnosing 
forecast errors using standard 
verification statistics. This figure shows 
five examples of forecast/observation 
pairs, with the forecasts and observations 
represented as areas. For a forecast user, 
cases a-d clearly demonstrate four 
different types or levels of “goodness”: 
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(a) appears to be a fairly good forecast, 
just offset somewhat to the right; (b) is a 
poorer forecast since the location error is 
much larger than for (a); (c) is a case 
where the forecast area is much too large 
and is offset to the right; (d) shows a 
situation where the forecast is both offset 
and has the wrong shape. Of the four 

examples, it appears that case (a) is the 
“best”. Given the perceived differences 
in performance, it is dismaying to note 
that all of the first four examples have 
identical basic verification statistics: 
POD=0, FAR=1, CSI=0. Thus, the 
verification technique is insensitive to 
differences in location and shape errors. 
Similar insensitivity could be shown to 
be associated with timing errors. 
Moreover, example (e) – which could be 
considered a very poor forecast from a 
variety of points of view – actually has 
some skill (POD, CSI >0), suggesting it 
is a better forecast than the one depicted 
in example (a). 

The present paper presents an 
object-oriented verification approach 
that more directly addresses the skill of 
fine scale forecasts than do traditional 
measures oriented approaches. With the 

“object-oriented” approach, forecast and 
observed precipitation areas are reduced 
to regions of interest that can be 
compared to one another in a meaningful 
way. Ebert and McBride (2000, hereafter 
EM) were among the first to explore 
defining and verifying rainfall using 
objects labeled contiguous rainfall areas 
(CRAs). Their method identifies rainfall 
areas in both forecasts and observations, 
and it determines displacement errors 
and other parameters for matched 
regions. The accumulated statistics for 
errors in position can be constructed and 
biases, mean error, etc., computed.  

O F O F

O F O F

FO

O F O F

O F O F

O FO F O FO F

O FO F O FO F

FO FO

(a) (b)

(d) 

(c) In broad terms the method we 
have developed is complementary to 
EM’s approach. Our means of 
identifying rain areas differs 
substantially from that presented in EM 
and we believe it is instructive to 
examine statistics of rainfall derived 
from different methods owing to the 
relative absence of object-based 
verification techniques found in the 
literature (and practiced in operational 
prediction centers). Our system is 
designed to be flexible enough to apply 
to any forecast system, in other words, it 
considers a range of scales for rain areas 
such that matching in the majority of 
instances is possible. In this paper, we 
will consider two sets of forecasts, 
produced by the Weather Research and 
Forecast model (WRF), one using a 22-
km grid covering the continental U.S. 
(CONUS), the other using a 4-km grid 
covering the central U.S. These two sets 
of forecasts illustrate the challenges of 
verification of rainfall forecasts on these 
different scales. 

(e) 

Figure 1: Schematic example of various 
forecast and observation combinations. 

In addition, we consider statistics 
of the rain areas themselves, without 
regard to matching, in accord with the 
well-documented limited predictability 
of rainfall, especially convective 



precipitation. Thus, the applicability of 
our method is not restricted to quasi-
predictable situations. It should be kept 
in mind, however, that no single 
verification approach can yield complete 
information about the quality of 
forecasts due to the complexity of 
numerical models and incompleteness 
and errors inherent within observations. 
Thus, it is crucial that interpretations of 
model performance based on our method 
be viewed jointly with results from other 
methods. Examples of this important 
synergy will be discussed. 

Following a short summary of 
the verification problem, this article 
provides a detailed description of the 
verification methodology (Section 2). 
Several examples of applications of the 
approach are described in Section 3, and, 
along with a summary of results, the 
critical future directions are outlined in 
Section 4. 

 
2. Methodology for Verification of 
Rain  

 
a. Concept 

As demonstrated in the previous 
section, one of the downfalls of standard 
verification approaches is that they often 
do not provide results that are consistent 
with subjective perceptions of the 
quality of a forecast (e.g., Fig. 1; Ebert 
2003). While subjective verification in 
general cannot provide consistent and 
meaningful results for more than a 
handful of cases, it would be desirable to 
mimic some attributes of human 
capability in determining the “goodness” 
of the forecasts. Thus, our approach 
objectively identifies “objects” in the 
forecast and observed fields that are 
relevant to a human observer. These 
objects can then be described 
geometrically, and relevant attributes of 

forecast and observed objects can be 
compared. These attributes include items 
such as location, shape, orientation, and 
size, depending on the user of the 
verification information. 

 
b. Data 

 
While our methodology is 

intended for a variety of forecast systems 
and observation sources, the present 
application considers precipitation 
forecasts from the Weather Research and 
Forecast (WRF) model (Michalakes et 
al. 2001). Forecasts from this model 
have been routinely produced at NCAR 
March 2001. The archive of real-time 
WRF precipitation forecasts includes 3-
hourly accumulations from a twice-
daily, 48-h forecast on a 22-km mesh 
covering the continental United States 
(CONUS) and immediately adjacent 
waters of the Atlantic and Pacific 
Oceans (Fig. 2), and a daily 36 h forecast 
on a 4-km sub-CONUS grid. The time 
period covered by the coarser-resolution 
forecasts is July-August, 2001; the 
period covered by finer resolution is 
May13 – July 10, 2003, roughly 
coincident with the Bow Echo and MCV 
Experiment (BAMEX, see Weisman et 
al. 2003, elsewhere in this volume, and 
Done et al. 2003). 

We have chosen to use the NCEP 
Stage IV analysis as verification data. 
This analysis, which combines 
information from radar and gauge 
reports, is produced hourly in real-time 
on a 4-km CONUS grid.  Some of the 
difficulties associated with using the 
Stage IV analysis include limited quality 
control and spotty coverage, especially 
over the mountainous western United 
States.  To reduce observational 
uncertainty somewhat, we will mainly 
focus on precipitation systems to the east 



of the Rocky Mountains. It will also turn 
out that biases in the predictions or 
observed estimates of rainfall do not 
greatly affect the determination of 
rainfall areas, but do affect the statistical 
distributions of rainfall inside the areas. 
Difficulties associated with precipitation 
estimation are partly the motivation for 
considering area and intensity separately 
in verification. 

For both the 22-km and 4-km 
WRF datasets, the Stage IV precipitation 
fields are interpolated to the model grid. 
The procedure averages all Stage IV grid 
boxes within each model grid box, 
accounting for instances when only a 
portion of an Stage IV grid box overlaps 
a model grid box.  
 
c.  Identifying and Characterizing Rain 
Areas 
i. Overview 

Our verification approach 
involves several steps. First, the data 
field is convolved with an appropriate 
shape (cylinders are usually used unless 
some special feature in the data is being 
sought). Convolution is tantamount to 
spatial smoothing. It simply replaces the 
precipitation value at a point with its 
average over the area with a simple 
geometric shape (i.e. a disk) whose 
centroid is located at that point.  

Second, the convolved field is 
thresholded.  This allows object 
boundaries to be detected.  Thresholding 
without convolving does not result in 
object boundaries that are similar to 
those a human would draw – many 
objects would be filled with holes of 
various sizes, and the boundaries would 
be more jagged than human-rendered 
outlines. Convolution and thresholding 
also fills in most holes in the regions of 
interest and creates outside boundaries 
that enclose regions with a small amount 

of room to spare – the same way a 
human would outline a region. 
Thresholds can be tuned to distinguish 
rain areas of greater size and intensity 
from those that are weaker and more 
isolated. The result of convolution and 
thresholding is a binary mask placed 
over the precipitation field with local, 
contiguous patches surrounded by 
regions of zero value. Note however, 
that the original precipitation values are 
retained and their statistics within each 
patch can be examined. 

Third, objects in the same field 
may be "associated" into simple 
geometric shapes.  This is done both in 
the forecast and in the observed fields. 
The purpose is to create objects with 
relatively simple shapes such that aspect 
ratio, angle (orientation) and other 
properties have unambiguous 
interpretation. Geometric simplicity also 
allows numerical rotation of objects on a 
grid with no distortion of the shape due 
to finite grid size. Measures of the 
“goodness” of fit are calculated and can 
be examined to make sure that the 
simple shapes retain essential 
charactistics of the original objects. 

  
ii. Object properties 

 
Once objects have been “found” 

they can be assigned various properties 
for purposes of categorization and 
evaluation. Object properties currently in 
use include the following: 
• First and higher moments: These 

are used to calculate many of the 
other object characteristics listed 
below.  In addition, they are of 
interest in their own right as an 
efficient summary of object size and 
internal intensity distribution. 

• Area: A simple measure of an 
object's size. 



• Centroid: One may imagine the 
centroid as a “center of mass” for the 
object.  It is characterized by two 
scalar values – either lat/lon or grid 
x/y coordinates.  Vector differences 
between the centroids of forecast and 
observed objects can reveal 
systematic location biases in the 
forecast. 

• Axis angle: A line drawn through the 
centroid of an object to best 
characterize the overall direction or 
orientation of an object is another 
useful object descriptor.  For 
example, storm systems off of a 
coastline often are approximately 
aligned with the coast, and 
differences in orientation between 
forecast and observed shapes can 
reveal another kind of bias. Note that 
the line drawn in this way is not the 
typical “least-squares” line fit. For 
simple shapes such as an ellipse, the 
axis angle is parallel to the major 
axis. For a rectangle, it is parallel to 
the longer sides.  

• Curvature: Fitting a circular arc to 
an object instead of a line gives a 
measure of the object's overall 
deviation from straightness. The 
reciprocal of the radius of the fitted 
arc is taken as the measure of object 
curvature. 

 
iii. Merging and Matching rules 
 

Current rules used to match 
observed and forecast objects use closest 
distance between centroids and 
difference in axis angle as indicators for 
object merging.  If these two parameters 
are within a set range of values, objects 
are merged – otherwise they are not. 
Note that object matching consists of 
two parts.  First, in a single field (either 
forecast or observation) objects may be 

matched to form composite objects.  
Object properties are then recalculated 
for this composite object. Second, 
forecast objects and observed objects are 
matched according to a similar scheme 
(though perhaps with different 
thresholds) to determine forecast errors 
and biases. In addition, a third type of 
matching is possible: Objects in a single 
field at one time can be matched with 
objects in the same field at a different 
time. This analysis makes feasible the 
tracking of objects over time and 
evaluation of object lifetimes. Rules for 
matching adopted thus far are rather 
simple, but more complicated rules, 
accounting for more factors considered 
when humans subjectively match rain 
areas, will be considered in future work. 

For particular examples of the 
rain areas derived from our 
methodology, the reader is referred to 
Chapman et al. (2003), elsewhere in this 
volume. 
 
d. Outcomes 

The object-oriented approach to 
verification of QPFs and convective 
forecasts allows the diagnostic 
evaluation of many characteristics or 
attributes of the quality of these 
forecasts. In some cases different 
attributes of interest may be specified for 
different users of the verification 
information, depending on their 
interests. For example, forecast model 
developers may be interested in 
diagnosing characteristics that will help 
lead to improvements in the forecasts 
(e.g., systematic biases in locations of 
storm systems; incorrect orientation of 
storms); aviation traffic flow managers 
may be interested in knowing how well 
the north-south location of storm 
systems is typically captured; water 
managers may be interested in errors in 



the total amount of precipitation over a 
particular watershed. All of these 
attributes, and many more, can be 
evaluated using this verification 

approach. In addition, the verification 
approach allows characterization of 
climatological attributes of the forecasts 
and observations. Examples of some 
initial applications of the approach are 
described in the following section. 
 
3. Statistical Results: 22-km WRF 

 
For an application of our rain 

area identification methodology, we 
computed all rain areas identified in 3-
hourly Stage IV analyses and 
corresponding forecasts from the real-
time WRF simulations, initialized at 
1200 UTC and run for 36 h, for July and 
August 2001. The forecast from 12-36 
hours was used to compare with 
observations. Rain areas were identified 
in both datasets as described earlier. 

In the present case, the 
convolving disk of 4-grid-point radius 
was used. A threshold of 2.5 mm was 
applied to the convolved (smoothed) 3-h 
precipitation fields to define discrete rain 
areas. The minimum-area bounding 
rectangle was then calculated for each 
area. Only contiguous areas covering 25 
grid squares or more were considered (if 
square, this corresponds to an area 110 
km on a side). While numerous smaller 
rain areas were identified, it was felt that 
such features were not well resolved. 

Figure 2. Histograms of the 
distribution of the number of rain 
areas as a function of rain-area size 
(square root of the area, expressed in 
grid points, where 1 grid point = 22 
km); (a) Stage IV; (b) WRF. All 
forecasts are initialized at 0000 UTC 
during the period July-August, 2001. 

 

a. Size Distribution 



(a) (c) 

(d)(b) 

Figure 3. Spatial density of rain areas computed from Wij = Σm exp(-dm
2/s2 ),  where s =7.5 grid points, and d is 

the distance separating each grid point (of the WRF 22-km grid) and rain area pair dm=((xij-xm)(yij-ym))1/2; (a) 
(upper left) Stage 4 rain-area density at 0900 UTC; (b) (lower left) Stage IV rain-area density at 2100 UTC (21 h 
forecasts); (c) (upper right) as in (a) but for WRF (21 h forecasts); (d) (lower right) as in (b) but for WRF (33 h
forecasts). 

The statistical distribution of rain 
area size is shown in Fig. 4 for both 
Stage IV and WRF forecasts. For the 
raw data, it is clear that the observations 
have a larger number of small rain areas 
with a more rapid decrease in the 
number of rain areas with increasing 
size. The peak in the observations occurs 
near a size of 9 grid points, or areas 
characterized by a length scale of about 
200 km. Although this appears to 
correspond well with the scale of 
mesoscale convective systems (MCSs), 
the peak may also be related to the 
smoothing and thresholding operation 
which tends to remove smaller areas. 
The WRF model exhibits no such peak 
and generally distributes its rain areas 
toward larger sizes. This problem is only 
exacerbated when merging is 
considered. 

b. Spatial Distribution 

To examine the spatial 
distribution of rain areas, we computed a 
summation of the weighting function 
exp(-dm

2/s2 ) at each grid point, where dm 
is the distance between a given grid 
point and the mth rain area. The decay 
scale factor s=7.5 corresponds to about 
150 km and yields a smooth distribution 
whose basic features are well resolved 
by both forecasts and observations. 

Figure 3 reveals the distribution 
of forecast and observed rain areas. In 
summary, during the nighttime (0900 
UTC), WRF predicted too few rain areas 
over southern Arizona, High Plains and 
too many rain areas over Gulf Coast 
States. During afternoon (2100 UTC), 
WRF predicted too few rain areas over 
Mid-Atlantic Region & Gulf Coast and 
too many rain areas over High Plains 

In general, the diurnal cycle of 
rainfall systems is poorly handled over 



the High Plains. This result is broadly 
consistent with the result obtained from 
examination of time-space diagrams of 
rainfall (Davis et al. 2003). The results 
of the rain area distribution combined 
with the space-time diagrams suggest 
that the major error in the WRF (and 
Eta) derives from a lack of propagating 
organized rainfall systems (probably 
mesoscale convective systems) initiating 
over the western High Plains during the 
afternoon and propagating eastward 
overnight. Similarly, the coherent High 
Plains initiation around 0000 UTC is 
countered by a minimum of initiation 
during the minimum in the heating cycle 
over the elevated terrain. This is 
revealed as a minimum in rain areas 
during the mid-afternoon over the plains 
that is poorly represented by WRF. The 
rain area diagnostic also reveals 
significant errors in convection 
associated with the thermally forced 
land-sea breeze system near the Gulf 
Coast. WRF shows a significantly 
smaller amplitude in its diurnal variation 
of rain areas. It is possible that at least 

areas near the Gulf Coast results from
WRF combining a number of smaller 
rain areas into a small number of large
areas. 

part of the bias in the number of rain 
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can be investigated with our approach. 
The fraction of area covered (Fig. 6a) is
simply the ratio of the number of grid 
points that survive the convolution and
thresholding process to the area of the 
bounding rectangle. This number seem
relatively invariant, about 0.65, across a 
range of scales. The WRF forecasts 
appear to match this parameter well. 
should note that the ratio of a circle or 
ellipse to the smallest bounding 
rectangle is π/4 ~ 0.79, hence, the
fractional area is smaller than woul
result from elliptical rain areas and th
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bound by the same amount as is 
observed. 

The
as are oriented relative to the 

Figure 4. (a) Fraction of rectangle with 
convolved rainfall greater than 2.5 mm 
in 3 h; (b) Median angle (with respect to 
east-west alignment) in degrees; (c) 
Mean aspect ratio of rain areas. All are 
functions of size of rain area (see Fig. 4).



east-west direction (an angle of zero).
Given that the maximum possible offse
is 90 degrees, the error of 20 degrees at 
small scales is particularly significant. 
Apparently, WRF orients its areas 
southwest-northeast too frequently.
may indicate an over production of 
frontally forced rain areas, since fron
are typically aligned southwest to 
northeast as well. 
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T
h described in this report shows 

promise as a way to alleviate some of the
problems and issues associated with 
current QPF and convective forecast 
verification techniques. Important issu
remain, however, including development 
of methods to separate and evaluate the 
various scales of the forecasts and 
observations. New applications of 
wavelet techniques to this problem are 
under development (e.g., Casati 2003) 
and may help untangle this issue. In 
addition, more sophisticated tools for
matching forecast and observed object
are needed and will be an important 
focus of the next phase of this work. 
Eventually, this methodology may be
tied in with alternative verification 
approaches such as the method 
developed by Ebert and McBrid
to decompose forecast errors into 
meaningful diagnostic components

classification approach being developed 
by Baldwin et al. (2003); and the 
“perfect hindcast” approach descri
Brooks et al. (1998).  

We are current
a methodology to examine fully 

explicit forecasts of convective systems. 
By adjusting the convolution and 
thresholding parameters, and consi
the intensity distribution within areas, 
we can distinguish strongly convective 
rain patches from lighter rain areas. 
Using simple matching techniques, a
described above, we can define coheren
rain areas (time matching) and 
corresponding areas between fo
and observations (spatial matching). 
Results from this application will be 
described at the conference. 
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